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Abstract. Optimal foraging theory (OFT) is based on the ecological concept that 

organisms select behaviors that convey future fitness, and on the mathematical 

concept of optimization: finding the alternative that provides the best value of a 

fitness measure. As implemented in, e.g., state-based dynamic modeling, OFT is 

powerful for one key problem of modern ecology: modeling behavior as a tradeoff 

among competing fitness elements such as growth, risk avoidance, and 

reproductive output. However, OFT is not useful for other modern problems such 

as representing feedbacks within systems of interacting, unique individuals: when 

we need to model foraging by each of many individuals that interact competitively 

or synergistically, optimization is impractical or impossible—there are no optimal 

behaviors. For such problems we can, however, still use the concept of future 

fitness to model behavior, by replacing optimization with less precise (but perhaps 

more realistic) techniques for ranking alternatives. Instead of simplifying the 

systems we model until we can find “optimal” behavior, we can use theory based 

on inaccurate predictions, coarse approximations, and updating to produce good 

behavior in more complex and realistic contexts. This “state- and prediction-based 

theory” (SPT) can, for example, produce realistic foraging decisions by each of 

many unique, interacting individuals when growth rates and predation risks vary 

over space and time. Because SPT lets us address more natural complexity and 

more realistic problems, it is more easily tested against more kinds of observation 

and more useful in management ecology. A simple foraging model illustrates how 

SPT readily accommodates complexities that make optimization intractable. Other 

models use SPT to represent contingent decisions (whether to feed or hide, in what 

patch) that are tradeoffs between growth and predation risk, when both growth and 

risk vary among hundreds of patches, vary unpredictably over time, depend on 

characteristics of the individuals, are subject to feedbacks from competition, and 

change over the daily light cycle. Modern ecology demands theory for tradeoff 
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behaviors in complex contexts that produce feedbacks; when optimization is 

infeasible, we should not be afraid to use approximate fitness-seeking methods 

instead.  

Key words: adaptive behavior, behaviorally mediated ecology, feedbacks, 

foraging theory, individual-based models, optimization, state- and prediction-

based theory, tradeoff decisions 

 

 

INTRODUCTION 

Optimal foraging theory (OFT) has been a foundation of mathematical 

ecology for over a half century, but its relevance seems to decrease as ecologists 

tackle problems of increasingly realistic complexity. OFT uses two concepts to 

model individual decision-making: the ecological concept that, due to evolution, 

behaviors act to convey individual fitness; and the mathematical concept of 

optimization, which represents decision-making as selecting alternatives that 

maximize an objective function. The objective function (“fitness measure”) is the 

link between the two concepts: it is a measure of specific elements of fitness, e.g., 

growth rate, probability of survival to a future time, expected number of offspring 

at a future date, expressed mathematically so it can be optimized. (These concepts 

are also used in optimization theory for other adaptive traits such as life history 

decisions. In fact, almost everything I say here about OFT also applies to such other 

theory.) When we consider food intake the sole element of fitness, OFT represents 

how individuals maximize intake rate (e.g., MacArthur and Pianka 1966; Charnov 

1976). For decisions that involve tradeoffs among competing fitness elements, 

state-based fitness maximization theory (often referred to as state-based dynamic 

modeling, SDM; Houston et al. 1988; Houston and McNamara 1999; Clark and 

Mangel 2000) can determine the optimal pathway through a set of behavior 

alternatives to maximize a fitness measure—such as expected future survival or 

reproductive output—that represents the combined effects of food intake, predation 

risk, etc. 

While OFT has been extremely productive as a framework for individual 

decisions, it has inherent limitations as a framework for modern ecology. Agrawal 

et al. (2007) reported the conclusions of a panel convened to identify research 

priorities for population and community ecology; those priorities included freeing 

ecology of three traditional assumptions: (1) that effects of multiple factors (e.g., 

competition and predation) are independent, (2) that traits are uniform and 

unchanging, and (3) that feedbacks due to interactions can be ignored. The first of 

these assumptions has been addressed extensively over the past several decades, 

with OFT—specifically, SDM—as an essential tool. The theoretical and empirical 

literature on “indirect effects” and “trait-mediated indirect interactions” (e.g., 

Abrams 1993; Preisser et al. 2005; Werner and Peacor 2003) has established the 

importance of considering tradeoffs among factors like growth and risk in 

understanding foraging decisions and their effects on ecology. SDM has been 

extremely valuable for understanding how such tradeoffs drive individual behavior. 

The essential characteristic of SDM that makes it powerful for modeling tradeoffs 
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is its evaluation of expected fitness over an extended future period: when 

individuals evaluate fitness over a long time, they can make good tradeoffs between 

food intake (to avoid future starvation and to increase reproductive output) and 

predation risks (which accumulate over time in a nonlinear way: a small daily risk 

becomes a low probability of extended survival).  

However, OFT is unfortunately dependent on the second and third of the 

problematic assumptions identified by Agrawal et al. (2007). Addressing trait 

variability and feedbacks requires modeling systems of diverse, interacting 

individuals, and OFT cannot represent the decisions of individuals in such systems. 

Why? Because optimization over a future time period is impractical or impossible 

when the alternatives available in the future, and their payoffs and risks, are subject 

to feedbacks from the behaviors of all the other unique individuals. We can model 

systems of diverse, interacting individuals via individual-based models (IBMs) that 

represent population or ecosystem ecology as emerging from the behavior, 

interaction (via competition, etc.), and fates of individuals. In such IBMs, the 

ecological concept of OFT—that individuals act to increase their fitness over a 

future time period—remains valid, but the mathematical concept—optimization—

is no longer useful. When our models include such realistic complexities as 

competition among individuals, multiple life stages and trait variability, and 

variable and dynamic environments, there is no optimal solution: the consequences 

of any choice depend on the choices and fates of the other individuals and on 

unknown future environmental conditions. (I illustrate this problem below.) 

Optimization is feasible only when we simplify away such complexities, but 

modern ecologists need to tackle the complexities head-on instead of avoiding 

them. 

The inability of traditional OFT to address such realistic complexities has 

unfortunate consequences. When we use IBMs to address theoretical or 

management issues without ignoring individual variability, feedbacks, etc., the 

unusefulness of OFT leads to a general presumption that theory is not relevant to 

models of useful complexity. My experience with individual-based modelers 

indicates that this presumption is widespread: when designing models with 

individual adaptive decision-making, modelers rarely turn to ecological theory and, 

instead, typically use ad-hoc approaches that have their own limitations. In 

particular, without the ability to use OFT very few IBMs have successfully modeled 

tradeoff behaviors, despite their ubiquity and importance. 

The question I address is how we can still use OFT’s ecological concept 

that individuals act to increase future fitness when we cannot use its mathematical 

concept of optimization. The answer is to model like engineers instead of 

mathematicians. Finding useful solutions to complex problems is the essence of 

engineering, and engineers use a variety of tools to do so. Instead of simplifying 

the modeling problems until we can find precise optimal solutions, we can simplify 

and approximate the solution methods to find good solutions to realistically 

complex problems. Instead of our theory being driven by mathematical concerns, 

it can be driven by the ecological problems we need to solve. 
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THEORY FOR GOOD DECISIONS WHEN OPTIMIZATION IS INFEASIBLE 

The traditional optimization approaches to theory have certainly produced 

many valuable insights and useful models of real systems and problems. But when 

we need behavior theory useful for managing and understanding real populations 

and ecosystems, traditional theory is frustrating: it can produce precise answers, but 

often only to highly approximated and simplified problems. 

How can we do theory the other way around: produce approximate answers 

for more realistic systems and problems? Can we produce theory more useful for 

complex problems if we seek good instead of optimal behavior—“fitness seeking,” 

when fitness optimization is impossible? Engineering decision theory provides 

guidance. Like OFT, engineering decision theory uses a specific mathematical 

objective function (e.g., minimizing life cycle costs). However, engineers often use 

simplistic predictions and other approximations to find good solutions for problems 

that would be impossible to optimize, and, when possible, they update predictions 

and decisions as new information becomes available. Can theory for foraging and 

other traits become both more realistic and less constrained if it explicitly represents 

how organisms base decisions on predictions of limited accuracy and then update 

those predictions and decisions as they sense new information?  

One approach engineers use to produce good decisions in complex 

situations is machine learning, a diverse and rapidly evolving family of methods 

for generating decision algorithms. Methods range from simple neural networks 

parameterized via genetic algorithms to much more capable methods such as 

reinforcement learning (Sutton and Barto 2018). These methods work by defining 

a mathematical decision structure (a neural network; a transition probability 

function for Markov processes) that is then “trained” by repeatedly exposing it to a 

set of challenges and using feedback on its success to modify the decision structure. 

Simple machine learning methods have long been used to model adaptive tradeoff 

decisions in IBMs (e.g., Strand et al. 2002). Potential applications of reinforcement 

learning to behavioral ecology are explored by Frankenuis et al. (2019), who 

describe it as a computational technique for finding good solutions to SDM-like 

problems too complex for formal optimization. However, machine learning has 

well-known limitations. First, it requires computer science expertise and effort to 

develop the decision structure, the training environment, and the method for 

evaluating success and using feedback to modify the decision structure. Second, 

these methods are not theoretical in the sense that OFT is: by incorporating the 

fundamental assumption that behavior acts convey future fitness. Instead, 

artificially learned behavior only solves the exact problem it was exposed to in 

training, and we cannot safely assume that such behavior will convey fitness under 

any other conditions. This second limitation seems critical because the main reason 

we produce ecological models is to predict responses to novel conditions. And, 

when we are modeling systems with feedbacks, any change in the population (e.g., 

the random death of a dominant individual) presents the remaining individuals with 

a novel situation.  

Railsback and Harvey (2020) explore another approach that is more closely 

based on traditional OFT. “State- and prediction-based theory” (SPT) can be 

defined as a general method for modeling adaptive decisions that (like SDM) 



5 

 

assumes individuals act to maximize a mathematical measure of future fitness, 

when (unlike SDM) that fitness measure includes predictions and approximations 

allowing it to be evaluated even when future conditions are unknown. While SPT 

is directly based on SDM, it differs in two key ways: SPT accommodates 

unforeseeable future conditions by assuming individuals update decisions over 

time, and it uses prediction and approximation to make good decisions when 

optimization is infeasible. Like SDM, SPT assumes an individual selects the 

alternative that provides the highest value of a mathematical measure that 

represents fitness elements such as future survival of predation and starvation. 

However, SPT does not try to find an “optimal” set of alternatives to use until the 

time horizon—it does not try to solve behavior over a whole life stage or extended 

period at once, which requires assuming that future environmental conditions and 

interactions are fixed and known. Instead, we use SPT to model how individuals 

update decisions over time as conditions change. Using SPT, an individual 

evaluates its fitness measure using: (1) explicit predictions of future conditions that 

are typically simplistic and inaccurate, yet useful; and (2) approximations such as 

the incorrect assumption that the individual will use one alternative from the present 

until the time horizon. In other words, SPT represents how an organism decides 

what to do right now by approximating what might happen to it in the future as a 

consequence. Repeating the decision over time lets individuals adapt to changes in 

their environment and in their own state, and is what makes SPT useful when 

optimization is impossible: individuals make a series of adaptive decisions as their 

world changes. 

In a typical application of SPT, a model organism evaluates each decision 

alternative (e.g., each patch an animal could forage in) by (a) using the extremely 

simplistic prediction that growth and risk conditions currently occurring would 

remain unchanged until the time horizon, (b) assuming incorrectly that it would use 

the same alternative until the time horizon, and (c) estimating its fitness measure at 

the time horizon using approximations such as neglecting how its growth and risk 

depend on size as it grows. (Railsback and Harvey 2020 provide detailed guidance.) 

The model organism then chooses the alternative offering the highest value of this 

approximated fitness measure—and repeats the whole decision process every time 

step as conditions change due to weather, competition with other individuals, its 

growth, a changing perception of predation risk, etc.  

Compared to both SDM and machine learning, SPT has the advantages of 

simplicity and computational efficiency: its use in an IBM requires neither iterative 

optimization techniques like dynamic programming nor any of the complex 

procedures needed to train and use an artificial behavior model. The example 

applications below illustrate these advantages. 

HOW APPROXIMATE APPROACHES CAN BE BETTER 

Railsback and Harvey (2020) show that SPT can produce behaviors 

surprisingly close to optimal in systems simple enough to also use optimization. 

But the title of this article indicates that this kind of approximate theory can produce 

“better” models... how can SPT be better than optimization? 

The most fundamental reason that approximate decision theory such as SPT 

can produce better models is that it allows us to unsimplify our representation of 
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the individuals and their environment: without the need to exactly solve an 

optimization, we can make the individuals and their habitat more diverse and 

realistic and still predict behavior and its higher-level consequences. One example 

identified by Railsback and Harvey (2020) is how starvation and its effects on 

behavior are represented. Optimization approaches such as SDM often assume that 

individuals starve if, and only if, their energy reserves fall below a threshold, an 

unrealistic approximation that greatly simplifies the optimization. But this 

approximation keeps SDM from reproducing important dynamics such as “top-

down” trophic effects: it does not allow individuals the scope to further reduce 

feeding when predation risk is particularly high (Railsback and Harvey 2013). With 

SPT, it is easy to use a more realistic assumption that starvation risk increases 

gradually as energy reserves decline. This unsimplification allows the individuals 

to hide, and sometimes survive, when predation risk is very high—a behavior that 

can have major implications to the dynamics (e.g., extinction risk) of at-risk 

populations. Examples presented below further illustrate how SPT makes it easy to 

include complexities that would make optimization (or game theory) intractable. 

Behavior theory based on approximation and updating can also be better 

because it allows us to address more realistic and important problems. Perhaps most 

importantly, it gives us theory useful in models that include feedbacks, especially 

individual-based population models that represent competition as well as 

unpredictable habitat dynamics that also make optimization infeasible. Behavior 

theory useful in IBMs can make IBMs easier to build and less ad hoc, and more 

likely to include the tradeoff behaviors and feedbacks that we now know are 

essential to ecology. 

Theory that we can implement in complex IBMs is better in a third way: it 

is more testable. “Testing” conventional theory that assumes a highly simplified 

ecological system in order to make its mathematics tractable presents a dilemma: 

what is a “valid” empirical test of theory that optimizes a highly simplified 

depiction of ecology? Do we use a highly simplified test system that represents the 

conditions assumed by the theory but not nature, or more natural conditions that 

violate the theory’s assumptions? Theory that can be implemented in an IBM that 

contains key complexities of a real system offers not only a way around this 

dilemma but a far more robust testing approach. Testing theory in the virtual 

ecosystem provided by an IBM can be more robust by providing an environment 

that is more realistic than simplified laboratory conditions yet still fully controlled, 

by facilitating the formulation and contrast of alternative theories in a hypothesis-

testing cycle (as illustrated by Railsback and Harvey 2020), and by allowing the 

theory to be tested against not just a single experiment but against a wide variety of 

empirical observations at different scales and ecological levels (Grimm et al. 2005; 

Lorscheid et al. 2019). A number of such theory tests have now been published 

(e.g., Amano et al. 2006; Railsback and Johnson 2011; Cortés-Avizanda et al. 

2014). 

Finally, theory such as SPT that assumes organisms have less-than-optimal 

capabilities is likely a more realistic representation of how organisms actually make 

behavioral decisions. This kind of theory can also accommodate realistic 

mechanisms such as limitations on the range or accuracy of sensing environmental 
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conditions and learning from experience (illustrated below). Neuroscientists, plant 

physiologists, and others are making rapid progress understanding how organisms 

actually make adaptive decisions; incorporating this new knowledge into ecology 

will require bottom-up theory that allows detailed representation of the complex 

mechanisms individuals actually use. 

EXAMPLES: THEORY PRODUCING GOOD BEHAVIOR IN COMPLEX CONTEXTS 

Railsback and Harvey (2020) provide examples of SPT-based models over 

a wide range of complexity. The simplest is a direct adaptation of an early 

illustration of SDM for optimal foraging under predation risk: the forager patch 

selection model of Mangel and Clark (1986). In this model, simple foragers select 

among five locations (patches 1-5) that respectively have daily probabilities of 

finding food and surviving predation of 0.0 and 1.0 (a refuge), 0.2 and 0.95, 0.35 

and 0.85, 0.35 and 0.75 (providing lower survival and no more food than patch 3), 

and 0.5 and 0.6. Mangel and Clark (1986) used dynamic programming optimization 

to identify the best sequence of patches to use over a 10-day life stage. However, 

this optimization was possible only because the model neglects feedbacks such as 

competition for food or escape cover. Once we assume that the behavior of each 

forager affects the resources available to the others, the decision becomes more 

complex and there is no clear optimal solution. Techniques such as stochastic 

dynamic programming can determine the overall average best series of patches to 

occupy, but cannot determine what each individual should do as a consequence of 

how lucky it has been at finding food and what the other foragers chose to do. 

The “suboptimal” version of the patch selection model uses the typical 

assumptions of SPT listed above. Foragers make the prediction that future feeding 

success and survival probabilities will be the same as they are at the time they make 

the decision (which is accurate for some versions of the model but not those with 

feedbacks). Dynamic programming is avoided by foragers using the incorrect 

approximation that if they select a patch they will stay in it until the time horizon 

at day 10, but then updating their decision each day considering their current energy 

reserves and the current state of the patches. Railsback and Harvey (2020) found 

that this approximate approach produces results—patch selection decisions and 

survival rates—very close to the optimal solution of Mangel and Clark (Figure 1, 

panel A). Foragers start in patch 3 and, unless unlucky at catching food, move to 

the safer patches.  

The SPT approach lets us easily add realistic feedbacks and complexities to 

the model with no change in foraging theory. Food competition and its feedbacks 

can be represented by assuming that each time a forager captures food the 

probability of feeding success for subsequent occupants of its patch decreases by 

1%. Food competition forces more use of riskier patches and some foragers now 

use patch 4 (Figure 1, panel B). “Predator swamping” can be represented by 

assuming risk decreases with the number of foragers in a patch, so survival 

probability is a feedback of other foragers’ behavior. I simply assumed that each 

forager evaluates its survival probability in a patch as 1.0 −
{(20 − 20𝑆) (20 + 𝑛)⁄ } where S is the standard patch survival probability 

described above and n is the number of foragers currently in the patch. (The 

standard survival probability is equivalent to a risk of 20(1 − 𝑆) 20⁄  foragers being 
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killed; each forager then increases the denominator, so with 5 foragers in a patch 

the risk is 20(1 − 𝑆) 25⁄ .) With this feedback, foragers concentrate in patch 3 

instead of using patch 2 (Figure 1 C).  

Learning can also easily be represented: I modified the model so foragers 

can move at most one patch per time step, and learn the predation risk of their 

current and adjacent patches from experience. Foragers initially assume all patches 

have a survival probability of 0.9 but then each forager adjusts its estimates of 

survival probability in its current patch and the two adjacent patches each time 

another forager gets killed or survives in those patches. This learning process uses 

Bayesian updating (e.g., Sect. 12.5 of Railsback and Grimm 2019). Patch selection 

is therefore a function of perceived risk, which is now a feedback of decisions by 

other foragers. Early in the simulation, foragers disperse more among patches until 

they learn accurate estimates of survival probability (Figure 1 D). The early use of 

patch 1 is an artifact of forager movement being limited to one patch at a time: 

foragers initialized in patch 1 have zero fitness in patches 1 and 2 (neither patch 

offers sufficient food), so they choose between them randomly. 

The original, most complex, and most thoroughly tested application of SPT 

is for habitat selection theory in our family of stream salmonid IBMs (Railsback 

and Harvey 2002; Railsback et al. 2021). These models were designed to support 

river management decisions such as how much flow to release from dams and how 

to design habitat restoration projects. In them, simulated fish each select among 

dozens to hundreds of potential foraging patches that differ in both growth rate and 

survival probability. Growth and survival also depend on the state of each 

individual (its length and energy reserves), and vary daily as stream flow, 

temperature, and turbidity change. In the newest version (Railsback et al. 2020), 

fish adaptively decide whether and where to feed or hide over the circadian light 

cycle, with growth potential and predation risk varying among dawn, day, dusk, 

and night as well as over space. The habitat selection theory uses the same 

simplifying assumptions as the simple forager model does, yet produces 

realistically good results at multiple scales. Simulation experiments showed that the 

theory could reproduce a variety of observed habitat selection responses to drivers 

such as competition, temperature (which drives metabolic demands and hence 

starvation risk), and predation risk (Railsback and Harvey 2002; Railsback et al. 

2005). Further experiments showed that IBMs using the theory could reproduce a 

variety of population-level observations (Railsback et al. 2002) and trophic 

interactions such as trait-mediated indirect interactions that are driven by risk-

growth tradeoffs (Railsback and Harvey 2013). Many of the realistic dynamics 

produced in these experiments are driven by feedbacks that are impossible or 

impractical to model with optimization theory. 
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Figure 1. Results of four versions of the SPT patch selection model, all using exactly the 

same decision theory. Each cloud of dots depicts the number of foragers selecting a patch on the 

given time step, out of an initial 100 foragers. (Many foragers die each time step.) A: Original 

version based on the patch selection example of Mangel and Clark (1986). B: With food 

competition. C: With “predator swamping”: risk decreases with the number of foragers in a patch. 

D: With limited selection distance and learning of survival probability from predation events.  
 

CONCLUSIONS 

Modelers, psychologists, and computer scientists have developed many 

ways to represent decision making in complex situations. These range from simple 

heuristics (e.g., Gigerenzer and Todd 1999), to artificially evolved mathematical 

structures that reference organisms’ sensing, emotional, and cognitive systems 

(e.g., Giske et al. 2003, 2013; Budaev et al. 2019), to powerful learning algorithms 

such as reinforcement learning (e.g., Sutton and Barto 2018). Ecological modelers 

need to be aware of such approaches and consider their potential usefulness, a topic 

too broad to address here. Instead, I focus only on methods like SPT that descend 

directly from, and retain the conceptual basis of, the fitness optimization 

approaches that are the foundation of theoretical ecology. 

My goal here is to expound three concepts. First is simply that we need 

theory for adaptive tradeoff decisions, such as foraging under risk, that is useful in 

contexts less simplified than those typically required by traditional, mathematics-

focused theory. Especially, we need theory for tradeoff decisions that is useful in 

IBMs designed to address management problems of real systems. Such contexts 

typically include complexities such as individual variation, sometimes hundreds of 

alternatives that individuals choose among, temporal change in both individuals 

and habitat, and—especially—feedbacks of behavior. Theory is essential for 

making models with such complexities efficient and coherent (Lorscheid et al. 

2019); ad hoc approaches have not not been productive.  
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The second concept is that ecological theory need not always depend on 

formal, rigid mathematical frameworks such as optimization and game theory. 

When ecologists address problems too complex for such frameworks, we should 

not be afraid to approximate the decision algorithm as well as approximating the 

model system. Instead of simplifying the system until we can use tidy mathematics, 

we can use messier mathematics—including approximation and simulation—so we 

can represent more of nature’s messiness. But messier mathematics can still be 

theory: general, reusable approaches and algorithms that retain the basic 

assumptions of OFT while producing useful and testable models of real problems. 

Third is that as we learn more about the neurological, biochemical, and 

other mechanisms used by real organisms to make adaptive decisions, we will need 

ecological theory that can represent those mechanisms. While the approaches 

illustrated here are still extreme simplifications, there is evidence that prediction, 

approximation, and updating (perhaps with learning) are useful not only as 

modeling abstractions but also as representations of what some organisms actually 

do (explored, e.g., by Glimcher and Fehr 2013). 

The main question raised by these concepts is: What new kinds of theory 

might be useful, and how do we discover it? What specific predictions and 

approximations are useful for modeling fitness-seeking behavior in IBMs and 

elsewhere? Railsback and Harvey (2020) also address these questions. Our 

experience so far is that the answers can come readily when we focus on specific 

systems and specific problems—such as how particular populations and 

communities respond to specific perturbations such as habitat alteration, species 

introductions, or climate change. When we have a specific system and problem, we 

can then identify key behaviors and the factors that drive them. We can also identify 

(from literature or new field studies) observations that guide the development and 

testing of alternative theories. The cycle of posing alternative theories for individual 

behavior, falsifying those that do not cause an IBM to reproduce a variety of 

observations at individual and higher levels, and then refining both theory and 

observation and starting the cycle over, has already been established as a productive 

way to find tested, reusable theory for adaptive behavior (Grimm et al. 2005; 

Grimm and Railsback 2005; Lorscheid et al. 2019). As ecologists apply these 

methods to specific problems and systems, we are likely to find generalizable 

categories of approximations and assumptions that are useful for specific classes of 

behavior that cannot be modeled with optimization theory. 
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