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Many animals make contingent decisions, such as when and where to feed, as trade-offs between growth and risk when these vary not 
only with activity and location but also 1) in cycles such as the daily light cycle and 2) with feedbacks due to competition. Theory can 
assume an individual decides whether and where to feed, at any point in the light cycle and under any new conditions, by predicting 
future conditions and maximizing an approximate measure of future fitness. We develop four such theories for stream trout and eval-
uate them by their ability to reproduce, in an individual-based model, seven patterns observed in real trout. The patterns concern how 
feeding in four circadian phases—dawn, day, dusk, and night—varies with predation risk, food availability, temperature, trout density, 
physical habitat, day length, and circadian cycles in food availability. We found that theory must consider the full circadian cycle: de-
cisions at one phase must consider what happens in other phases. Three theories that do so could reproduce almost all the patterns, 
and their ability to let individuals adapt decisions over time produced higher average fitness than any fixed behavior cycle. Because 
individuals could adapt by selecting among habitat patches as well as activity, multiple behaviors produced similar fitness. Our most 
successful theories base selection of habitat and activity at each phase on memory of survival probabilities and growth rates experi-
enced 1) in the three previous phases of the current day or 2) in each phase of several previous days.

Key words:  activity selection, circadian rhythms, foraging, habitat selection, population models, theory, trade-off decisions, 
trout.

INTRODUCTION
Many animals make decisions in cyclical environments, with the 
best choice of  behavior in one part of  the cycle depending on what 
they do in other parts of  the cycle. These decisions often involve 
trade-offs among objectives such as obtaining energy and avoiding 
predation. The decisions are also often contingent, in the sense that 
two decisions that strongly affect each other are made together. 
We address the common example of  circadian foraging: making a 
contingent selection of  activity (whether to feed or hide) and hab-
itat (where to feed or hide) over the daily light cycle, considering 
how both feeding success and predation risk vary over the cycle. 

These decisions produce circadian patterns in behavior driven by 
daily cycles in habitat variables such as light, temperature, and 
food availability, but also affected by factors such as habitat quality, 
competition, and individual state. Such cycles have been observed 
throughout the animal kingdom, including in insects (Whitford and 
Ettershank 1975), birds (Holmes et al. 1978; Brandt and Cresswell 
2009), small (Levy et  al. 2016) and large mammals (Klinka and 
Reimchen 2002), marine fish (Strand and Huse 2007), and the sal-
monid fish we model (Metcalfe et al. 1998, 1999).

(The terminology related to 24-h cycles of  light and dark can be 
confusing. We use the word “circadian” in reference to such cycles; 
“day” for the part of  the cycle with sunlight, except when it clearly 
refers to a 24-h time period (e.g., “one-day”); and “diurnal,” “cre-
puscular,” and “nocturnal” for being active in day, dawn and dusk, 
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and night, respectively. We also use the word “phase” for the four 
segments of  the circadian cycle defined by light conditions: dawn, 
day, dusk, and night. “Circadian rhythm” here refers to the pat-
tern of  activity displayed by the model population through the 
24-h cycle.)

We address theory for how individual animals make contin-
gent foraging decisions in a cyclical environment. Furthermore, 
we address individual decisions in a population context: the op-
tions available to each individual, and their fitness value, depend 
on what competing individuals in the population decide to do. 
Specifically, we develop theory for how each unique individual 
decides, at the start of  each phase of  a circadian cycle, whether 
to feed or hide and which habitat patch to use for that activity 
(the “habitat and activity selection” behavior), when the number 
of  patches and the growth and risk provided by each depends on 
the individual’s internal state and on unpredictable factors such as 
weather and the behavior of  other individuals. This problem in-
cludes feedbacks at both the individual and population levels: the 
individual’s internal state is an outcome of  its previous decisions 
(e.g., the extent to which it traded off growth to increase survival 
probability, which affects its size and energy reserves), while at the 
population level the decisions of  each individual determine the re-
sources they consume and make unavailable to others, how long 
they live, and how many offspring they have, all of  which affect 
the availability of  resources to competing individuals.

This habitat and activity selection problem can be addressed by 
applying fitness optimization theory. We can assume that each indi-
vidual, at the start of  each circadian phase, makes some prediction of  
the conditions they will be exposed to until a future time horizon and, 
therefore, what alternatives will be available and what the growth and 
risk associated with each are. Then we can use state-dependent fitness 
optimization theory (e.g., Houston and McNamara 1999; Clark and 
Mangel 2000) to optimize the individual’s behavior until the time ho-
rizon using techniques such as dynamic programming. Finally, we can 
assume that the individual executes the optimal behavior for the cur-
rent time step. This prediction and optimization cycle can be repeated 
at the start of  each circadian phase to consider the effects of  unfore-
seen changes (from either environmental variability or feedbacks) that 
make the predictions inaccurate.

“State- and prediction-based theory” (SPT; Railsback and 
Harvey 2020) is an alternative that differs from such optimiza-
tion theory only by using approximations to eliminate the need 
for dynamic programming optimization. These approximations 
typically include the individual deciding what to do each time 
step by assuming (incorrectly) that it will use the same beha-
vior pattern until the time horizon and neglecting the effects 
of  growth on future survival probability. SPT typically uses a 
“sliding” time horizon that remains a constant number of  days 
in the future.

SPT has the advantages of  being more tractable computationally 
and perhaps less likely to overestimate the cognitive abilities of  real 
organisms, and can produce behavior very similar to optimization: 
Railsback and Harvey (2020) contrasted results of  an SPT model 
of  a simple forager problem to an optimization, finding that SPT 
produced behavior nearly as successful as optimization except when 
survival to the time horizon was very unlikely. Its use of  simple pre-
dictions and approximations lets SPT produce good decisions while 
allowing the processes driving the decision (e.g., how expected fit-
ness depends on energy reserves; how mortality risk depends on 
individual and habitat variables) to be complex in ways that would 
make dynamic programming optimization very challenging. The 

sliding time horizon also avoids “terminal effects” of  conventional 
optimization approaches that affect behavior as the time horizon ap-
proaches (e.g., Fiksen 1997). These characteristics of  SPT make it 
useful for individual-based population models (IBMs) of  complex, 
real-world management problems. Such IBMs can also serve as rig-
orous and challenging test beds for behavior theory (Grimm et  al. 
2005; Grimm and Railsback 2012).

A behavior can be modeled by a range of  SPT-based theories 
that differ in complexity. In some cases, more complex theories 
cause IBMs to better reproduce empirical observations; in others, 
more complex theories are not better than simpler alternatives 
(Railsback and Harvey 2020). Alternative theories can be evaluated 
using the “pattern-oriented theory development cycle” (Grimm 
et al. 2005; Grimm and Railsback 2012): posing alternative theories 
as hypotheses; implementing them in an IBM that includes feed-
backs of  behavior, environmental variability, and other complex-
ities; and contrasting and falsifying theories by how well they cause 
the population model to reproduce a variety of  characteristic pat-
terns observed in real individuals and populations.

Railsback et al. (2005) showed that SPT can produce realistic cir-
cadian rhythms in a population context with feedbacks and variable 
environments. In that application of  SPT, each individual decides 
whether to feed or hide, in which one of  many alternative habitat 
patches, at the start of  each day and night. In this study we sup-
plement those experiments by addressing a more complex decision. 
The model of  Railsback et al. (2005) simplified the circadian cycle 
to only two phases, day and night, so the activity selection decision 
could be treated as selection among four alternatives: feeding in 
day and hiding at night, feeding at night and hiding in day, feeding 
day and night, or hiding day and night. However, representing only 
two phases oversimplifies many systems. For example, crepuscular 
periods have particular importance for many species: dawn and 
dusk can provide enough light to forage successfully while making 
foragers less visible to predators than during full daylight. Here, 
we seek theory applicable to any number of  phases per circadian 
cycle while evaluating alternative theories by modeling four phases: 
night, dawn, day, and dusk.

We use stream populations of  salmonid fish as a study system. 
Circadian variation in the behavior of  stream salmonids has been 
studied well enough to document many of  its complexities and 
their causal mechanisms. Circadian activity rhythms in stream 
salmonids appear driven by the effects of  light on both feeding 
success and predation risk (Metcalfe et  al. 1999). Salmonids are 
normally visual predators on small invertebrates drifting in the 
stream current; they can detect and capture prey at night but over 
smaller ranges. While salmonids face some nocturnal predators 
(e.g., owls, otters), often their most important predators (birds, es-
pecially mergansers) depend on daylight for prey detection (Harvey 
and Nakamoto 2013).

We start by identifying the patterns observed in circadian 
foraging behavior of  stream salmonids used as criteria for testing 
and contrasting theory. Next, we briefly describe the IBM in which 
we test theory, focusing on the processes driving the foraging deci-
sion. Then we develop four alternative theories for how trout de-
cide, at the start of  each phase of  a circadian cycle, whether to 
feed or hide and where to do so. Fourth, we describe the simula-
tion experiments used to test theory and their results. Our results 
show how well each alternative theory, when implemented in the 
IBM, reproduces the observed patterns. Finally, we draw conclu-
sions about appropriate levels of  complexity for modeling circadian 
foraging decisions using SPT.
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METHODS
Characteristic patterns in circadian behavior of 
salmonids

We first identified a diverse set of  patterns observed in the circadian 
foraging behavior of  real stream salmonids that characterize how this 
behavior varies with important drivers. We focus on four patterns that 
emerge from habitat and activity selection decisions; Supplementary 
Material defines and analyzes three additional patterns.

Pattern 1: More diurnal feeding when food availability or 
fish condition is low
Metcalfe et  al. (1999) observed in a laboratory experiment that 
well-fed fish were active exclusively at night but as food availability 
decreased they became increasingly diurnal. Metcalfe et al. (1998) 
documented that the frequency of  diurnal feeding increased as 
body condition decreased and starvation risk increased. Orpwood 
et  al. (2006) observed less diurnal feeding when food was made 
more abundant.

Pattern 2: More diurnal and crepuscular feeding at 
higher temperatures
A number of  studies have observed more salmonid feeding during 
higher light conditions—during day or crepuscular periods—at 
higher temperatures. For example, Fraser et  al. (1993, 1995) con-
ducted experiments in which they varied only temperature while 
controlling other variables that could contribute to seasonal differ-
ences in behavior. Over a range from <5 to >15 °C, higher tem-
peratures produced slightly fewer fish feeding at night and many 
more feeding in day. Breau et al. (2007) observed in wild Atlantic 
salmon juveniles a strong positive relation between water tempera-
ture and the percentage of  fish active in daytime, over temperatures 
between 13 and 24 °C. Roy et al. (2013) also observed wild Atlantic 
salmon juveniles and documented decreasing diurnal and crepus-
cular feeding as temperature decreased at the end of  summer. This 
pattern is presumed driven by the increase with temperature in 
metabolic demands of  fish and the food intake therefore needed to 
maintain body condition and avoid starvation.

Pattern 3: Effects of competition on circadian foraging
Competition can affect the prevalence of  diurnal and nocturnal 
foraging and how circadian rhythms respond to other variables. 
Harwood et al. (2001) observed that competition with brown trout 
for preferred nocturnal feeding habitat caused juvenile Atlantic 
salmon to become more diurnal. Alanärä et  al. (2001) found that 
dominant brown trout individuals all fed during crepuscular periods 
at low temperatures, but at higher temperatures the increased ener-
getic demands increased the intensity of  competition and caused 
some individuals to switch to nocturnal feeding. Fingerle et  al. 
(2016) compared activity times in juvenile arctic charr at low and 
high densities; at both densities feeding was mainly nocturnal but 
at high densities there was more activity overall and especially more 
feeding in crepuscular periods. Because competition often inter-
acts with other variables such as habitat availability, we consider 
this “pattern” reproduced simply when fish density affects foraging 
rhythms in some way.

Pattern 4: Circadian cycles of food availability affect 
foraging
The primary food of  stream salmonids, invertebrate drift, is often 
most available during crepuscular or nocturnal periods (Naman 

et  al. 2016), which could make feeding during those phases rela-
tively more beneficial. Giroux et  al. (2000) observed a nocturnal 
peak in drift availability and a tendency for trout to feed when drift 
rates were higher. (Higher food availability at night is not universal; 
e.g., Fingerle et al. 2016.)

The population model

The individual-based population model we use to test foraging 
theory is version 7 of  inSTREAM, a family of  salmonid IBMs that 
we have been developing and using for 20  years. Supplementary 
Material provides a full description and justification of  the model 
as used here. InSTREAM includes many natural complexities, in-
cluding spatial and temporal variation in habitat conditions and 
variation among individual trout in size, condition, and location. 
Therefore, it provides a virtual laboratory for testing ecological 
theory that is more complex and realistic than many laboratory 
experiments while eliminating the uncertainties of  observing and 
measuring natural systems.

Entities and scales
Space is represented as a stream reach made up of  patches. Flow, 
temperature, turbidity, and surface irradiance (light flux at the 
water surface) are reach-level habitat variables (varying over time 
but not among patches). The patches represent areas of  relatively 
uniform habitat. Patches have dynamic variables for water depth 
and velocity (which depend on flow) and irradiance at mid-depth 
(a function of  depth, turbidity, and surface irradiance), and sepa-
rate static variables representing availability of  cover for short-term 
escape, longer-term concealment, and reducing swimming costs of  
feeding. Time is represented as four time steps per day, one for each 
phase of  the circadian cycle. The clock time at which these time 
steps begin is calculated from the latitude and date: dawn begins 
when the sun reaches 6° below the horizon and ends when the sun 
is 6° above the horizon; dusk begins and ends when the sun is 6° 
above and below the horizon.

Trout are represented as individual entities. Each model trout 
has variables for its length, weight, condition (the ratio of  its weight 
to the weight of  a healthy individual of  the same length), and ac-
tivity: whether it is feeding or hiding. Trout locations are repre-
sented as the patch that they feed or hide in.

Events and schedule
The first action executed each time step is habitat updates. If  flow, 
temperature, and turbidity have changed since the previous time 
step, the new values are read from a file and variables that depend 
on these reach inputs are updated. (In the simulations here, these 
variables are either held constant or updated once per day, to make 
results easier to understand.) The surface irradiance is updated 
each time step, and calculated as the mean irradiance over the time 
step. Patch irradiance values are then updated.

Next, each trout executes the following three actions. The trout 
execute these in descending size order (largest to smallest) to repre-
sent the size-based dominance hierarchies widely observed in trout 
(e.g., Hughes 1992). Each trout completes all three actions before 
the next trout begins.

 • Habitat and activity selection: The trout determines which patch 
to occupy and whether to feed or hide, using one of  the alterna-
tive theories described below. Trout evaluate all patches within a 
radius that increases with trout length and not dry at the current 
flow, and move to the one providing the highest value of  a fitness 
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measure. The fitness measure is based on the growth rates and 
survival probabilities that a trout would experience, which are 
explained below. (The model assumes no “site fidelity” or reluc-
tance to move, a simplifying assumption whose realism could vary 
among species and individuals.)

 • Survival: Whether a trout dies of  each of  several potential causes 
(especially, predation by terrestrial animals, predation by other 
fish, starvation) is treated as a stochastic event with the probability 
of  survival a function of  trout and habitat variables explained 
below. This action is turned off for most of  the simulations used 
here to remove survival as a source of  variation in results (individ-
uals behave in response to risk but do not die).

 • Growth: Trout length, weight, and condition are updated from 
the growth rate (which is negative when trout hide or have food 
intake less than energy costs) that results from their choice of  
patch and activity.

Growth
Like other salmonid energetics models, inSTREAM treats trout 
growth rate as a complex function of  habitat and trout variables. 
Growth is modeled as the difference between gross energy in-
take from feeding and the energetic costs of  metabolism and 
feeding. Trout can feed in two alternative modes: searching for 
benthic food and drift-feeding: holding a stationary position and 
capturing prey as it drifts past in the current. For trout of  the 
size we model here, drift feeding is usually more profitable than 
searching. Drift food intake increases with the concentration of  
drifting prey and fish length (bigger fish can feed in faster water). 
Intake varies nonlinearly with velocity: higher velocity carries 
more prey past, but makes prey harder to capture; consequently, 
intake increases from zero at zero velocity to a maximum at an 
intermediate velocity that depends on fish length. Intake also de-
pends nonlinearly on irradiance: at night light levels, reduced 
ability to see prey is assumed to reduce intake to approximately 
one quarter of  day rates.

Metabolic energy costs increase with both swimming speed and 
temperature. The rate at which trout use energy increases at an 
increasing rate as swimming speed increases above about half  of  
the maximum sustainable speed. Therefore, as patch velocity in-
creases the benefits of  higher drift rates are offset by sharply rising 
energy costs, so growth peaks at an intermediate velocity. Similarly, 
metabolic rates increase at an increasing rate as temperature rises 
above about 5  °C, so trout need higher food intake to maintain 
their weight at high temperatures.

Model trout that choose the hiding activity experience meta-
bolic costs with zero swimming speed, and no energy intake from 
feeding. Therefore, they lose weight at a low rate that increases with 
temperature.

Starvation survival
InSTREAM models the probability of  starvation survival as a func-
tion of  body condition. If  a model trout loses weight, its length 
remains unchanged so its body condition decreases. The proba-
bility of  surviving starvation for a day is assumed to decrease at 
an increasing rate as condition decreases (Figure  1). Therefore, a 
steady rate of  weight loss results in decreasing probability of  daily 
survival, and the probability of  surviving until the future time ho-
rizon we use (always 90 days in the future) decreases sharply as the 
rate of  weight loss increases. However, trout are able to survive 
long periods of  weight loss (Simpkins et al. 2003); our parameters 

produce a 50% probability of  surviving 1% weight loss per day 
for 40 days. Compared with the common assumption in behavior 
theory that starvation happens at a deterministic threshold, this 
continuous relation between starvation survival probability and 
body condition is more realistic for fish and, very importantly, al-
lows individuals to make good decisions even during periods when 
no alternatives offer adequate energy intake for long-term survival 
(Railsback and Harvey 2020).

Predation survival
InSTREAM simulates predation mortality as a stochastic event 
with the survival probability a deterministic function of  trout and 
habitat variables. For the simulations used here, predation by ter-
restrial animals is the only important mortality risk other than star-
vation. InSTREAM assumes that such predators hunt mostly, but 
not entirely, by sight. Therefore, survival probability is assumed to 
increase as the irradiance in a trout’s patch decreases; compared 
to daytime values, the risk of  daily mortality is approximately 70% 
lower during crepuscular phases and 80% lower at night. Depth 
also provides protection by making trout less visible and harder to 
catch from the surface; proximity to escape cover also reduces risk.

We assume that use of  the hiding activity reduces predation risk 
by 90%. However, model trout cannot use hiding in patches lacking 
concealment cover. Concealment cover is represented via a patch 
variable for the number of  places in the patch where an individual 
trout could hide, and each trout choosing to hide in a patch uses 
up one such place. This approach was chosen because field obser-
vations and laboratory experiments (Harvey and White 2016) have 
shown the reluctance of  trout to share hiding space. Even when 
individuals are willing to share hiding space, availability of  such 
space can affect activity selection (Larranaga and Steingrímsson 
2015). Therefore, the prevalence of  hiding at the population level 
can be limited by the availability of  concealment cover.

Model implementation

InSTREAM 7 is implemented in the NetLogo platform for 
individual-based models (Wilensky 1999; Railsback and Grimm 
2019). The code used here was thoroughly tested by using tem-
porary output files to export the inputs and results of  each 
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Figure 1
Logistic curve of  starvation survival probability. Survival probability 
declines little as body weight falls to ~80% of  healthy weight, given the 
trout’s length. If  weight continues to decline, daily survival probability 
decreases rapidly. Consequently, the probability of  surviving a period of  
weight loss depends strongly on the rate of  weight loss and the length of  the 
period; trout are likely to survive modest weight loss for prolonged periods.
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submodel and then comparing the results to independent imple-
mentations in Excel.

Alternative theories

Here we describe the four versions of  SPT that we evaluate for 
modeling the habitat and activity selection decision. These are only 
a small initial set of  alternatives chosen to provide informative con-
trasts in the key assumption that distinguishes SPT from previous 
approaches—how individuals predict future conditions—so they 
can motivate further theory refinement. All four versions share 
common characteristics of  SPT (Railsback and Harvey 2020). At 
the start of  each time step (each dawn, day, dusk, and night), trout 
decide which combination of  habitat patch and activity (feeding vs. 
hiding) to use in a time step; under all theories they select the com-
bination that would provide the highest value of  a fitness measure 
that approximates the probability of  surviving both predation and 
starvation until a future time (the time horizon), when starvation 
survival is a function of  current condition and future growth rate.

The differences among our theory alternatives are in how indi-
viduals predict future growth rates and survival probabilities—the 
mental models that simulated trout use to predict future growth and 
survival. There is an extensive literature on how animals may pre-
dict future conditions and its consequences, both theoretical (Dall 
and Johnstone 2002; McNamara et  al. 2016) and empirical (e.g., 
Bergeron et al. 2011; Fraker 2008). We explore the circadian beha-
vior problem with a range of  simple assumptions. The first theory 
uses an extremely simple prediction method that ignores the circa-
dian cycle; the rest consider the cycle with increasing sophistication.

The fitness measures used in all theories represent future sur-
vival to the time horizon. To avoid additional complexity in results, 
we include no incentive for growth beyond that needed to avoid 
starvation. However, the theories are readily modified to include 
the value of  growth when its contribution to fitness cannot be ig-
nored (e.g., for juveniles the fitness measure includes the benefits of  
growing to reproductive size).

Theory A: Ignore circadian cycles
This is the simplest theory, included mainly for contrast to the 
more complex alternatives. Using it, fish predict their growth rate 
and survival probability until the time horizon by simply assuming 
growth and survival will continue at the values experienced at the 
current time step (the time step for which the animal is currently 
selecting habitat and activity). This assumption completely neglects 
the circadian light cycle.

At the start of  each time step, each simulated trout evaluates 
each possible combination of  patch and activity and calculates the 
current growth rate (GC, g/d) and survival probability (PC, prob-
ability of  surviving predation for one day) it would obtain; these 
values depend on state variables of  the patch (e.g., depth, velocity, 
hiding cover availability, temperature) and of  the trout (length, 
weight). From these rates and the trout’s current state, it calculates 
the fitness measure—its expected probability of  surviving both pre-
dation and starvation until the time horizon—using the prediction 
that the current survival probability and growth rate would persist 
until the time horizon. This prediction is clearly wrong because it 
ignores the circadian cycle as well as future changes in growth and 
risk, but our experience is that simplistic predictions can often pro-
duce good decisions (Railsback and Harvey 2020).

The expected probability of  surviving predation until the time 
horizon T days in the future is approximated simply as PT = PC

T.

The expected probability of  surviving starvation until the time 
horizon is approximated by predicting the trout’s length, weight, 
and body condition at the time horizon from GC. First, weight at the 
time horizon is projected from the current weight and growth rate 
(WC, GC): WT = WC + (T × GC). Then, the trout’s condition factor at 
the time horizon (KT) is projected from WT and the current condi-
tion factor (KC). If  WT is greater than the weight of  a healthy trout 
(WH; weight of  a trout with the same length and K of  1.0), then 
the trout is expected to have grown in length and have KT = 1.0; 
otherwise, the trout’s length is projected to remain unchanged (it 
remains underweight for its length) and KT is set to WT/WH. Finally, 
the probability of  surviving starvation until the time horizon (ST) 
is approximated using the method of  Railsback et  al. (1999; also 
explained by Railsback and Harvey 2020), which uses the first mo-
ment of  the logistic equation raised to the power T:

ST =

Å
1
a
ln
Å
1+ exp(aKT + b)
1+ exp(aKn + b)

ã
/ (KT − KC)

ãT

where a and b have values of  −6.59 and 14.6 for the logistic rela-
tion between K and starvation survival discussed above, and KC is 
the trout’s current condition factor. (When KT equals KC, division 
by zero is avoided by setting ST to the value of  S from the logistic 
relation at KC, raised to the power T; this happens whenever KC is 
1.0 and GC is positive.)

The fitness measure F, expected probability of  surviving both 
predation and starvation until the time horizon, is evaluated simply 
as: F = PT ST.

Theory B: Constant prediction
This theory represents the entire circadian cycle but in an extremely 
simple way. The fitness measure is evaluated by using growth and 
survival rates over the day that ends with the current time step—not 
just those of  the current time step—as the prediction of  conditions 
until the time horizon. However, growth and survival over the parts 
of  the circadian cycle preceding the current phase are represented 
simply as constant parameters. On each time step, the growth 
rate during all other phases of  the circadian cycle is assumed to 
be GB = 0.0  g/d (the trout is assumed to meet but not exceed its 
metabolic demands); and the survival probability is assumed to be 
PB = 0.995, which corresponds to a survival rate of  63% over the 
90-d time horizon. These values for the parameters GB and PB are 
somewhat arbitrary yet reasonably representative of  long-term av-
erages; to avoid bias, we did not attempt to calibrate them.

Mathematically, the constant prediction theory is like the first 
theory except for two changes that adjust the predicted daily 
growth rate and survival probability for the portion of  a full day 
constituted by the current time step. In the equation for WT, 
GC is replaced by a one-day average growth rate calculated as: 
GD = (GC × dC) + (GB × (1− dC)) where dC is the duration (d) of  
the current time step. In the equation for PT, PC is replaced by the 

survival probability over a full day: PD = PdC
C P(1−dC)

B .

Theory C: One-day memory
The third theory differs from the first and second in using the 
growth rate and survival probability experienced throughout the 
most recent circadian cycle as the prediction of  conditions until 
the time horizon. This theory therefore considers the full cycle and 
how feeding success and risks vary through it. For example, if  an 
individual fed successfully during the most recent daytime, its daily 
starvation risk would be lower during the following dusk and night 
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phases, so hiding in those phases would become more attractive. 
(This theory is most like the two-phase theory of  Railsback et  al. 
2005, but differs in a critical way: the previous theory assumed in-
dividuals decide what to do on one time step by considering all pos-
sible combinations of  activity and habitat over a circadian cycle, 
whereas this theory considers only the activities and habitat actually 
used previously in the same day. This difference allows the number 
of  phases per circadian cycle to be increased with negligible effects 
on the complexity of  the algorithm and its computational effort.)

The one-day memory theory is evaluated like the constant pre-
diction theory except that GD and PD are now calculated using ex-
perienced rates instead of  constant parameters to represent growth 
and predation survival during previous phases of  the one-day cycle. 
The model trout maintain a “memory” of  the predation survival 
probabilities (Pi, for i = 1–3) and growth rates (Gi) they experienced 
with the habitat patch and activity they chose in each of  the three 
phases preceding the current one. For example, when a trout is 
selecting habitat and activity at the start of  a daytime phase, Pi and 
Gi are the predation survival probabilities and growth rates experi-
enced in the previous dawn, night, and dusk phases. (At the start 
of  a simulation, memory values for theories C and D are initial-
ized to growth of  0.0  g/d and survival of  1.0.) Our assumption 
that individuals can sense the growth rates and predation risks they 
are (or could be) exposed to is widely used in behavioral ecology. 
Food intake is directly experienced by fish, but predation risk is not. 
However, there is strong evidence that trout, like many animals, es-
timate risk as a function of  habitat variables (e.g., Fraser et al. 1993; 
Harvey and White 2017), indicating that this assumption, while 
clearly a simplification, is not unreasonable.

These memories are combined with the survival and growth 
rates for the alternatives being considered for the current phase to 
determine the overall rates for a full circadian cycle, adjusting for 
the duration of  each phase. This combination for survival proba-
bility PD is calculated as follows:

PD =

(
3∏

i=1

(Pi)
di

)
(PC )

dC

where di are the durations of  the previous three phases (as fractions 
of  a day). The combined one-day growth rate GD is calculated as 
follows:

GD =

(
3∑

i=1

Gidi

)
+ (GcdC).

Then PT, ST, and F are calculated exactly as for the first theory ex-
cept that GD and PD replace GC and PC.

Theory D: Multiday memory
This theory is identical to the one-day memory theory except that 
previous phases are represented by the average conditions ex-
perienced with the patches occupied and activities used over the 
previous n days instead of  only the conditions experienced in the 
current day. Here we arbitrarily use n = 9 days. Then in the equa-
tions for PD and GD, Pi and Gi are replaced by Pn and Gn, the mean 
survival probabilities and growth rates over the previous phases of  
the current day and previous n days.

The multiday memory theory is implemented by each simulated 
fish maintaining lists that contain the survival and growth values 
experienced during each circadian phase of  the previous 9 days. 
The initial survival and growth values of  1.0 and 0.0 are replaced 
by actually experienced values over the first nine simulated days. 

(We address the effects of  this initialization method in the first 
subsection of  Results.)

Study site

The simulated reach (previously used by Harvey and Railsback 
2007, 2012) spans 184 m of  Little Jones Creek in northwestern 
California, where the stream drains 26 km2 of  second-growth 
forest. Dry-season streamflow is typically about 0.15 m3/s, whereas 
peak wet-season flows typically exceed 30 m3/s. At median flow, 
stream width averages 7.1 m and depth 33 cm. The channel gra-
dient is moderately steep (about 2%). Abundant gravel substratum 
apparently limits the number of  places providing concealment 
cover for large juvenile and adult trout; we estimated a total of  163 
such hiding places in the reach at median streamflow. To elimi-
nate strong effects of  concealment cover limitation on results, the 
number of  hiding places per patch was set to four times the esti-
mated actual values.

Simulation experiments

The standard parameters and inputs used in simulation experi-
ments are described here, while each experiment’s detailed design 
is described below with its results. Our simulation experiments were 
designed to limit variability due to factors other than the alternative 
behavior theories and the processes that drive them. All simulations 
were initialized with a population of  100 trout, sufficient to cause 
strong competition for good feeding sites. Many of  the studies cited 
to support our characteristic patterns observed large juveniles, so 
we simulated trout of  similar size: initial lengths were drawn ran-
domly from a triangular distribution with minimum, mode, and 
maximum lengths of  8, 10, and 12 cm. The condition factor K was 
initialized to 1.0. To keep the number of  fish constant during simu-
lations, simulated mortality was deactivated even though fish still 
behaved to avoid risk.

InSTREAM is typically calibrated by adjusting parameters for 
food availability (concentration of  drift food and production rate 
of  search food, both assumed constant over time) and the overall 
intensity of  terrestrial predation risk to produce realistic annual or 
seasonal rates of  survival and growth. To avoid biasing the contrast 
of  alternative behavior theories, we did not calibrate the model 
but instead used calibration parameter values from applications of  
earlier versions of  inSTREAM to the same study site (e.g., Harvey 
and Railsback 2007, 2012). The final simulation experiment (“One-
year simulations”) verified that these parameter values produced 
reasonable growth and survival rates.

Although inSTREAM is designed to predict effects of  temporal 
variation in habitat conditions, these experiments used a steady 
stream flow (at the long-term median of  0.44 m3/s), a benign tem-
perature of  10  °C, and a low turbidity of  5 NTUs. Simulations 
ran September 15–25, at a latitude of  42°N; because this period 
spans the fall equinox, day and night phases were both 10.9 h long, 
whereas dawn and dusk were both 1.1 h. We conducted 10 repli-
cates (in which different random numbers were used to set initial 
trout lengths and locations) of  each scenario.

RESULTS
Here we describe the simulation experiments used to test how well 
each of  the four theories for habitat and activity selection could re-
produce the characteristic patterns of  observed circadian behavior, 
and explain the key results and differences among theories. But we 
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start by exploring the behavior produced by each theory under the 
standard simulation scenario and end by contrasting the fitness pro-
vided by the theories under realistic simulation conditions.

Standard scenario

All four alternative theories caused the simulated trout to settle into 
consistent circadian feeding rhythms, within a few days (Figure 2). 
Even the multiday memory theory using memory from the pre-
vious 9 days produced consistent behavior by about the eighth day. 
Because of  this consistency, we present most results in subsequent 
analyses by looking at behavior only during the final day of  the 
simulation, as in Figure 3. Differences among replicate simulations 
were also small (Figure 2); therefore, in subsequent figures we dis-
play means over 10 replicates of  each scenario but do not show 
error bars, to improve figure clarity.

The ignore circadian cycle theory caused all trout to feed all 
the time. This result is not surprising because it uses the extremely 
simple prediction that the individuals’ current behavior would per-
sist until the time horizon. Individuals always feed because when 
they consider hiding for a time step, they predict that they would 
hide until the time horizon 90 days in the future, which would place 
them at very high risk of  starvation.

In contrast, the other three theories produced reasonable circa-
dian feeding rhythms (Figure 3). The exact rhythms differed among 
the theories, but the most important characteristics were consistent 
across them: nocturnal feeding being dominant, and less feeding 
in daytime than in crepuscular periods (though this difference was 
small for the multiday memory theory). Crepuscular feeding is 
more common than diurnal presumably because it offers consid-
erably lower risk due to lower light levels but also because a trout 
must feed in several crepuscular periods to obtain as much growth 

as in one daytime. The constant prediction theory produced more 
feeding overall than the one-day and multiday memory theories, 
presumably because it does not consider actual weight gain but 
always assumes zero growth in previous time steps. The constant 
prediction and multiday memory theories produced equal levels of  
feeding activity in dawn and dusk, but the one-day memory theory 
produced more feeding in dusk than dawn. This difference appears 
to be because the one-day memory theory produced less-frequent 
diurnal feeding so individuals more often had lower body condition 
entering dusk and thus had more incentive to feed.

How good is the behavior produced by the alternative theories, 
and how significant are the differences among theories? It is not 
trivial to answer these questions. Ideally, these approximate the-
ories could be compared to an optimal solution, but competition 
among trout makes calculation of  optimal behavior extremely cum-
bersome. (Because the model assumes a length-based hierarchy, 
optimization of  these simulations that lack temporal variation in 
habitat could be possible by optimizing one individual at a time, 
from largest to smallest.)

We can evaluate the predicted behaviors by looking at their ef-
fects on the two components of  individual fitness in our model: sur-
vival of  predation and starvation. To quantify the first component, 
we used the probability of  surviving predation (and the other non-
starvation mortality risks) over the last full day of  our 10-day simu-
lations: the value of  PD as described above for the one-day memory 
theory, for the habitat and activity chosen on the last time step. As 
a measure of  starvation survival, we used the body condition (K; 
fraction of  “healthy” weight at the end of  the simulation, used as 
our driver of  starvation) averaged over the last full day of  the simu-
lation, weighting values from each phase by the length of  the phase. 
In contrast to the measure of  predation survival, body condition 
inexactly indicates starvation survival, which is a complex and non-
linear function of  condition and future growth. We report the av-
erage values of  these measures for the total of  1000 fish included in 
the 10 replicate simulations of  each scenario.

Because it caused continual feeding, the ignore circadian cycle 
theory resulted in high body condition but substantially lower sur-
vival probability (Figure 4). (The difference between daily survival 
probability of  0.996 for this theory and 0.998 for the other theories 
may seem small, but these probabilities correspond to 23% vs. 48% 
probability of  surviving a year.) Even though the other three the-
ories produced different circadian feeding rhythms (Figure 3), they 
produced similar survival probabilities and only small differences 
in condition on the last day of  the 10-day simulation. (The body 
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condition values of  0.995 for the constant prediction theory and 
0.997 for one-day and multiday memory theories, if  maintained 
steadily, produce one-year starvation survival probabilities of  88% 
and 89%.)

We also evaluated the theories by comparing their fitness out-
comes to those of  16 simulations that each forced all trout to use 
one of  the 16 possible combinations of  feeding and hiding over 
the four circadian phases. These simulations are not a way to 
find “optimal” behavior because 1)  individual variation in size 
and competition means that different combinations are likely 
to be best for different individuals and 2)  they did not allow 
switching among circadian rhythms, which could be more suc-
cessful than following one continually. However, results of  these 
16 simulations (Figure 5) do provide a baseline for comparison to 
results produced by our theories. Eight of  the behavior combin-
ations produced mean survival probability equal or greater than 
those of  the constant prediction, one-day memory, and multiday 
memory theories, and four produced condition equal or greater 
than those theories did. However, none of  the combinations pro-
duced both survival probability and condition as high as those 
three theories did.

Pattern 1: More diurnal feeding when food 
availability or fish condition is low

We evaluated the ability of  our theories to reproduce this pattern 
in two simulation experiments. First, the parameters for availability 
of  drift and search food were varied from 0.2 to 3.0 times their 
standard values, in eight scenarios. In the second experiment, the 
starting condition factor K of  simulated trout was varied, in five 
scenarios, from 0.5 to 1.0. Lower values of  K place trout at higher 
risk of  starvation so their trade-off decisions should more strongly 
emphasize energy acquisition.

In both of  these experiments, the ignore circadian cycle theory 
produced feeding during all phases of  the day, under all levels of  
food availability and body condition. Because of  this inability to 
produce trade-off behaviors, we exclude this theory from the re-
maining analyses.

In the food availability experiment (left panels of  Figure 6), the 
constant prediction theory did not produce the expected pattern: 
it resulted in nocturnal feeding at all food levels and no consistent 
increase in diurnal feeding as food availability decreased. The one-
day and multiday memory theories produced similar results: as food 
availability decreased, diurnal and crepuscular feeding increased 

sharply while nocturnal feeding decreased. In the experiment that 
varied the starting value of  K (right panels of  Figure  6), the con-
stant prediction theory again produced nocturnal feeding in all 
scenarios, with crepuscular and then diurnal feeding increasing as 
starting condition decreased. The one-day and multiday memory 
theories produced transitions from primarily nocturnal to primarily 
diurnal feeding as starting condition decreased, but different pat-
terns in crepuscular feeding.

Pattern 2: More diurnal and crepuscular feeding 
at higher temperatures

We tested the ability of  each alternative theory to reproduce this 
pattern by running the model 11 times using the standard inputs 
except for temperature, which was varied from 2 to 22 °C. Then, 
to evaluate the ability of  model trout to respond to changes in 
temperature, we also simulated a temperature excursion: a pe-
riod of  27  days in which temperatures were constant at 10  °C 
for 5 days, then decreased from 10 to 2 °C by 2 °C per day, in-
creased by 2  °C per day to 20  °C, and then returned to 10  °C 
and held there for five more days. (Temperature changed at the 
start of  the night phase.)

In the constant temperature simulations, the constant prediction, 
one-day memory, and multiday memory theories caused the model 
to reproduce the pattern, with diurnal feeding especially increasing 
with temperature (Figure 7). Under the constant prediction theory, 
all trout again always fed at night and often also during crepuscular 
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Figure 5
(Top) Daily survival probability and (bottom) body condition results of  
simulations forcing fish to use each of  the 16 possible activity patterns. The 
bar labels indicate when the fish fed. Results are from the last day of  10-day 
simulations; means over 10 replicate simulations.
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periods. Diurnal feeding increased rapidly with temperature above 
10 °C, and the frequency of  crepuscular feeding increased rapidly 
at temperatures above 12  °C. Under the one-day and multiday 
memory theories, there was some diurnal feeding at all temper-
atures but mostly nocturnal feeding at temperatures below about 
12 °C; as temperature increased further, feeding switched from pri-
marily nocturnal to primarily diurnal. Presumably because crepus-
cular periods contribute relatively little to daily growth when food 
availability is constant, patterns in crepuscular feeding were more 
complex and less consistent.

The high frequency of  crepuscular feeding at the lowest tem-
perature under the one-day and multiday memory theories seems 

surprising. This anomaly results from inSTREAM’s assumption 
that maximum food consumption rate decreases with temperature 
and is very low at 2 °C. This assumption is based on observations 
that low temperatures slow physiological processes including diges-
tion (e.g., Kepler et al. 2014). Apparently, food intake was so limited 
by the temperature effect on digestive rate that trout had to feed for 
additional time at 2 °C to meet even their reduced metabolic needs.

The temperature excursion experiment produced clear differ-
ences among theories (Figure  8). The constant prediction theory 
produced some response to the initial dip in temperature, with 
less diurnal and more crepuscular feeding during the dip, and 
the frequencies of  diurnal and crepuscular feeding followed the 
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subsequent temperature spike. The one-day memory theory pro-
duced a clearer response to the initial temperature dip, with dusk 
feeding decreasing as temperature dropped, then the increase in 
crepuscular feeding at the lowest temperature as observed in the 
constant-temperature experiment. During the temperature spike, 
the frequency of  crepuscular feeding rose and fell with temperature, 
and diurnal feeding increased slightly at the highest temperature. 

The multiday memory theory produced a response to the initial 
temperature dip but not until several days after it had ended. That 
theory also produced a delayed response to the spike.

Under the constant prediction and, especially, the one-day 
memory theory, the circadian rhythm did not return at the end of  
the experiment to its form at the beginning, apparently due to loss 
of  body condition during the temperature spike (Figure 9). At the 
highest temperatures, model trout lost weight instead of  assuming 
the predation risk needed to fully meet the higher metabolic de-
mands. After temperatures decreased, the reduced condition caused 
the trout to feed more often during crepuscular phases (constant 
prediction) or diurnally (one-day memory) to regain weight.

Pattern 3: Feedbacks of competition on circadian 
foraging

We evaluated the ability of  the alternative foraging theories to re-
produce this pattern by varying the number of  trout in the simu-
lations from 5 to 500. Responses to trout abundance are complex 
and difficult to predict because they emerge from several processes, 
including competition for safe and productive feeding locations, 
which vary in abundance and location over the circadian cycle, and 
for concealment cover.

All theories except ignore circadian cycles produced strong ef-
fects of  competition (Figure 10): as trout abundance increased from 
very low, feeding changed from primarily nocturnal to increasingly 
crepuscular and diurnal. The main difference among theories is 
again that the constant prediction theory caused all individuals to 
always feed at night, whereas the other theories did not.

Pattern 4: Circadian cycles of food availability 
affect foraging

We examined the extent to which the theories cause feeding ac-
tivity to respond to increasing food availability during crepuscular 
periods. The simulation experiment varied the availability of  food, 
only during dawn and dusk periods, from 0 to 10 times the standard 
value. Because the two crepuscular periods make up only about 9% 
of  the day, these scenarios vary total food availability from 0.9 to 
1.8 times that of  the standard scenario.

The constant prediction theory produced a modest response in 
crepuscular feeding, but opposite the expected increase (Figure 11). 
Under this theory, a rhythm of  always feeding at night and about 
30% feeding in day appeared locked in, so higher food availability 
in crepuscular periods allowed the trout to meet their metabolic de-
mands with less-frequent crepuscular feeding. The one-day memory 
theory produced the expected increase in crepuscular feeding—es-
pecially during dusk, presumably because it follows day, when trout 
rarely fed—and decreases in nocturnal and diurnal feeding, al-
most completely eliminating the need to feed during daytime. The 
multiday memory theory produced a response similar to that under 
one-day memory but with less increase in dusk feeding.

One-year simulations of realistic conditions

Our final exploration of  the four alternative theories for activity 
and habitat selection simulated a full year (October 2000 through 
September 2001) using observed time series of  flow, temperature, and 
turbidity as the input driving decisions. The mortality function was ac-
tivated so that simulated trout could die of  predation, starvation, or 
other less-likely causes. The primary output of  interest was survival 
rate, measured as the percentage of  the 100 initial trout that survived 
the year. We also looked at final mean length of  trout as a measure 
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of  growth; higher growth is not an indicator of  decision success and 
in fact we did not expect model trout to grow much because the fit-
ness measure used in all the theories seeks long-term survival only, not 
growth. However, growth does indicate how the trade-off between 
feeding and avoiding predation differed among theories.

The results (Figure  12) indicate that all four theories produced 
behavior sufficient for some individuals to survive for a year, though 
the one-day memory and multiday memory theories produced sub-
stantially higher survival than did the other two. As expected be-
cause it produced near-constant feeding, the ignore circadian cycle 
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theory produced much lower survival than the others. The constant 
prediction theory produced both growth and survival lower than 
the one-day memory and multiday memory theories.

The constant prediction and multiday memory theories de-
pend on parameters that are not in the other theories, cannot 
be estimated from data, and were not calibrated prior to these 
simulation experiments. An exploration of  the constant predic-
tion theory’s parameters GB and PB indicated that, for 1-year 

simulations at our study site, higher survival was obtained when 
GB was slightly negative. When GB is negative, individuals decide 
whether to feed under the assumption that they lose weight in the 
other parts of  the circadian cycle, which provides motivation to 
feed in the current phase. Varying the multiday memory theory’s 
memory length n from 5 to 20 days produced no clear effect on 
survival over the year.
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during each phase at simulated abundances of  5–500.
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DISCUSSION
The kind of  behavior we address is widely recognized as essential 
to all levels of  ecology. Trade-off decisions are not just important 
as individual behavior, but can also affect population-, commu-
nity-, and ecosystem-level dynamics through mechanisms such as 
nonconsumptive trophic interactions. Modeling trade-off behav-
iors of  diverse individuals in IBMs that contain natural complex-
ities such as competition and environmental variability can provide 
unique insights into population and community dynamics, yet 
doing so remains a challenge (Railsback and Harvey 2013).

We applied four versions of  SPT, of  increasing complexity, to this 
challenge. We then treated the theories as alternative hypotheses in 
a pattern-oriented theory development cycle (Grimm et  al. 2005; 
Grimm and Railsback 2005), testing their ability to reproduce, 
in our trout IBM, a variety of  patterns observed in real systems. 
Because we focused on qualitative patterns instead of  quantitative 
model results, we were able to test theory without calibrating—and 
potentially biasing—the model to a particular study site.

Our simulation experiments indicate that the three SPT theories 
that consider the full circadian cycle could all produce usefully re-
alistic behavioral responses to a wide variety of  conditions and rel-
atively high survival in long-term simulations with realistic habitat 
variability (Table 1). In contrast, the ignore circadian cycle theory 
consistently produced unrealistic behavior. This difference supports 
our first two general conclusions: 1) SPT can produce successful cir-
cadian habitat and activity selection decisions in a population con-
text that includes feedbacks, but 2)  it is essential for the theory to 
consider the full circadian cycle: decisions at each phase must con-
sider what happens at other times of day.

Our third general conclusion is supported by results of  the exper-
iment in which we compared results of  the four theory alternatives 
to results when model individuals were forced to use fixed circadian 
activity rhythms (Figure 5) while still choosing the best habitat each 
time step. We found that our theories that let individuals update 
their decisions each time step in response to their current state and 
environment (which in this experiment changed only due to compe-
tition with others for food and concealment cover) produced higher 
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Figure 12
Survival and growth in the 1-year simulations. Left: percentage of  100 initial trout that survived for 1 year. Right: mean final length of  surviving trout (initial 
mean length was 10 cm). Because survival is partially stochastic, plots display the distribution of  results over 10 replicate simulations.

Table 1
Summary of  the pattern-oriented theory testsa

Pattern

Theory

A: Ignore circadian cycles B: Constant prediction C: One-day memory
D: Multiday 
memory

1:  More diurnal feeding when food availability or fish 
condition is low

– – + +

2:  More diurnal and crepuscular feeding at higher 
temperatures

– + + +

3: Feedbacks of  competition on circadian foraging – + + +
4: Circadian cycles of  food availability affect foraging – – + +
5: Less diurnal feeding under higher predation risk ~ + ~ +
6: Physical habitat affects circadian foraging – + + +
7: Day length affects circadian foraging – + + +

aPatterns 5–7 are analyzed in Supplementary Material. Explanation of  symbols: + means that the pattern was robustly reproduced by the theory, ~ means that 
the theory neither robustly reproduced nor contradicted the pattern, and – means that the theory produced results contradicting the pattern.
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individual fitness (approximated as the combination of  survival and 
condition) than any of  the fixed rhythms. Therefore, we conclude 
that highest fitness is provided not by a fixed circadian behavior 
pattern but instead by the ability of  individuals to adapt over time. 
Two mechanisms might explain this conclusion. First, individuals 
can avoid competition by feeding when fewer others are feeding, so 
an activity pattern best for most of  the population may not be best 
for some individuals, especially in a dominance hierarchy. Second, 
even for an isolated individual the best behavior pattern could in-
clude variation among days, for example by feeding only every 
other night.

All our theories except ignore circadian cycles produced adaptive 
behavior that reproduced the observed patterns and provided high 
individual fitness, even though they often produced quite different 
circadian activity rhythms. The one-day memory and multiday 
memory theories especially produced, in many experiments, dif-
ferent rhythms but similar survival and condition results. Our 
fourth conclusion therefore is that, at least in the system we mod-
eled, a variety of  circadian activity rhythms may be nearly equally 
good. The interactions among activity, habitat, and competition 
contribute to the similar fitness offered by various alternatives. For 
example, when competition for feeding habitat at night would force 
use of  relatively risky habitat, it may be almost as safe and more 
energetically profitable to feed in a safer patch during day. Such 
trade-offs were particularly clear in simulations (not presented here) 
we made of  a large, deep river: as we increased predation risk, for 
example, model trout responded not only by increased nocturnal 
feeding but also by feeding diurnally in deeper habitat.

Which theory is best? Here we summarize what we learned 
about each. The ignore circadian cycle theory uses the prediction 
that current conditions will persist until the time horizon; this pre-
diction has worked well for habitat selection behavior in models 
without circadian cycles (Railsback and Harvey 2002, 2020), but it 
does not appear useful for the contingent behaviors of  activity and 
habitat selection or for cyclical environments.

The constant prediction theory is the simplest that considers 
the full circadian cycle. It caused the IBM to reproduce all of  our 
evaluation patterns except patterns 1 and 4.  However, in many 
experiments, its behavior was less responsive, especially in consist-
ently producing nocturnal feeding in all individuals. Experiments 
not presented here indicate that universal nocturnal feeding was 
not hardwired by this theory; it does not occur when individuals 
assume they lose rather than just maintain weight in phases other 
than the current one. This theory also produced substantially lower 
survival in the full-year simulation. The simplicity of  this theory is 
appealing and it may deserve consideration for especially simple 
models. However, its dependence on two unmeasurable parameters 
(growth and survival assumed for phases other than the current 
one) is a clear disadvantage.

The one-day memory and multiday memory theories differ only 
in the amount of  recent experience individuals use to predict future 
conditions. They both caused the IBM to reproduce the seven eval-
uation patterns (Table 1), at least over some ranges. In some cases, 
the two theories produced surprisingly different circadian rhythms 
with similar overall fitness. However, the temperature excursion ex-
periment (Figure 8) showed that the multiday memory theory can 
produce behavior that lags behind environmental drivers, which 
does not seem realistic or adaptive. On the other hand, that theory 
could keep short-term events from biasing decisions too strongly. 
The relative benefits of  the one-day and multiday memory the-
ories will depend on patterns of  variation in environmental drivers. 

(A theory that discounts older memories could be developed and 
evaluated as a compromise between these two.)

This study illustrates how behavior theory can be evaluated not 
just at the individual level but by the population- and higher-level 
dynamics it produces. Implementing foraging theory in an IBM and 
examining its higher-level effects via simulation has several benefits. 
First, it forces the theorist and the theory to confront the natural 
complexities in the IBM, making it more likely that the theory is 
applicable to reality. Second, simulation allows us to confront al-
ternative theories with a more comprehensive range of  tests than is 
typically feasible through experiments on real organisms. We used 
a wide range of  observations from the literature, at both the in-
dividual and population levels, instead of  conducting new field or 
laboratory studies. Most importantly, this approach can result in 
theory and models useful for understanding and predicting how the 
dynamics of  real populations and communities emerge from indi-
vidual behavior.

SUPPLEMENTARY MATERIAL
Supplementary data are available at Behavioral Ecology online.

Supplementary material provides a complete description of  the 
stream trout model, and description and analysis of  the three addi-
tional patterns included in Table 1.
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