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ABSTRACT

A Comparison of High Spatial Resolution ImagesHore Scale Vegetation Mapping

Christine A. West

Recent advances in airborne and spaceborne sdr@aa@snade high spatial
( Im/pixel) and spectral resolution images (e.g. IKE8\ SPOT 5, Quickbird 2) widely
available, raising questions regarding their wtildr floristic identification and
classification. Additionally, the use of objecienmted software to perform automated
classification and mapping has increased througti@upast 20 years. Studies assessing
the utility of these image and software optiong|frently center on large, homogeneous
sites and do not address these applications td,dm&trogenous areas typical of the
Pacific Northwest. In this study, a high-denséynpling grid was used (approximately
9.0 % sample), followed by agglomerative clustaalgsis and ordination, to identify all
vegetation alliances and associations on a 148y site in Maple Creek, California.
Supervised classification using object-orientedveafe was performed on three images
of various high spatial resolutions (0.15 m 4-bardal photo, 0.60 m 4-band satellite
image, and 1 m 3-band satellite image). The rnegsutiassifications were compared with
the reference vegetation mgjerived from plot and image data)assess accuracy.
Results show differences in classification accutastyveen the 3 images with td&60m
Quickbird image producing the highest oveealturacy (69%); followed by the 0.15m

aerial photo (48%); and the 1m NAIP image (37%) nvassessed at the alliance level.
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1. Introduction

The use of remote sensing technology in vegetal@ssification and mapping
has increased over the past 30 years (Environm8gsaiéms Research Institute and The
Nature Conservancy, 1994; Jensen, 2000; Greeribelg 2006). Remote classification
reduces the need for field sampling and alleviategss constraints, making this
technology a valuable tool for resource managendl@vbva, 2004; Leckiet al., 2005;
Johansewt al., 2007). Historically, remotely-based vegetaclassification was
performed via manual polygon mapping with air plsatandersoret al, 1976; Hall,

2003; Sandmann and Lertzman, 2003) as these inadigesd distinctly higher spatial
resolution or smaller pixel sizes (Benson and Maci& 1995; Lillesanét al., 2004)

than satellite imagery. Recent advances in spacelsensors, however, have made high
spatial and spectral resolution satellite images (KONOS, SPOT 5, Quickbird 2)
widely available, raising questions regarding thwility for floristic identification and
classification (Carleer and Wolff, 2004; Johanseal., 2007). Additionally, vegetation
mapping methods have expanded with the developaienttomated classification
procedures which provide image enhancement anegsow) techniques not available
with manual mapping practices (Lillesaedal., 2004).

Higher spectral resolution, or larger number ofdsaim a given sensor (Lefsky
and Cohen, 2003), provides opportunities for disicgyr vegetation characteristics
unobservable in natural color (Lefsky and Cohe®2@Qillesandet al.,2004). The very

near infrared band, in particular, allows for tlevelopment of vegetation indices such as



a normalized difference (NDVI) to assist in livenopy detection (Asneat al., 2003).
Higher band numbers, however, may increase sc&m&’rand image variance
(Lillesandet al., 2004).

Although higher spatial resolution imageryl( m) allows for clearer
visualization of ground features (Lefsky and CoQ3; Wulder et al., 2004) an
increase in pixel number raises the internal vdighvithin homogeneous land cover
units, causing difficulties in class discernmenai(€er and Wolff, 2004). Intra-class
variability issues are particularly problematic far-pixel classifiers which rely solely
on spectral signature values (Cushnie, 1987; Wardaaod Strahler, 1987; Lefsky and
Cohen, 2003). Per-pixel software limitations, sashsalt and pepper’ effects where
individual pixels are classified differently frorhdir neighbors (Yu et al., 2006), have led
many interpreters to believe these classifiersiatedeal for large heterogeneous units
such as vegetation classes (Song et al., 2005t ¥, 2006) Exploration into spectral
mixture analysis (Foody and Mathur, 2006) and dbjeiented software, however, have
shown promise in tolerating certain levels of viility (Yu et al., 2006) previously
found to be problematic for per-pixel classifiers.

Consequently, object-oriented approaches havenepopular for vegetation
classification particularly when using higher-regan images (Hay et al., 2005; Chubey
et al., 2006). Object-based classifiers use a@geeggroups of pixels, or image objects,
to train the program to identify discrete entitresmally recognizable to the human eye
(Hay et al., 2005). In general, these programsggpatially adjacent pixels into

spectrally homogeneous objects to then be usedrasium classification units



(Yu et al., 2006). Feature Analyst 4.1 (Visual lrelag Systems, 2006) is a popular
object-oriented commercial software package intaday that utilizes an artificial neural
network classifier (Ripley, 1996) to consider saldittributes, such as spatial association
and image texture, when performing automated feagutraction (Vanderzanden and
Morrison, 2003). Object-oriented classificatiorsrt, however, always reach the
commonly recommended 80 - 85% accuracy standandr(Ermental Systems Research
Institute and The Nature Conservancy, 1994; Coagalhd Green, 1999; Foody, 2002;
USDA, 2002) especially when analyzing fine scdlajdtically-based categories (e.g.
alliance or association). Thus, automated softwaess often broaden their class scales
to reach this accuracy standard, resulting in @al®mogeneous units that may not
adequately reflect the heterogeneity typical of ynsgcond-growth forests (Spies et al.,
1994; Jiang et al., 2004).

Furthermore, because access and sampling issuesagnified in larger areas,
studies assessing the utility of remotely-driveassification frequently center on
extensive sites such as entire national forespguks (Jiang et al., 2004; Greenberg et al.,
2006; Yu et al., 2006), or large private holdingpi€s et al., 1994). Limited ground
sampling in these large areas for training anddasilbn purposes (Environmental
Systems Research Institute and The Nature Conssrva94; Jiang et al., 2004; Leckie
et al., 2005) generally results in low-confidemeterence data (Foody, 2002). In this
study, however, the small scale of the site affdra@inique opportunity for
comprehensive ground coverage and generation bfdogfidence reference

information.
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In addition to image resolution and classificatoathod considerations, image
type (air photo vs. satellite) may play a role acw@racy (Lefsky and Cohen, 2003).
Satellite images avoid many of the problems assedtmaith aerial photography such as
join lines in mosaicked scenes, non-standardizgbtforientations, or difficulty in
acquiring multidate data sets (Lefsky and Cohef32Chubey et al., 2006). Spaceborne
platforms can be limited, nonetheless, by infldkipbf satellite orbit schedules, as well
as increased atmospheric effects due to greateosémground distance (Lefsky and
Cohen, 2003). Perhaps one of the chief issuesdiegamage type is the associated cost
incurred with each of these options. When deakitg a small site, the price per acre of
imagery may be increased as there are frequentiymam area requirements for scene
purchases. Acquiring timely aerial photographsalan be prohibitively expensive due
to the cost of chartering flights. Commercial Bageimagery ranges in price from $1 —
22/knt (Yildirim and Seker, 2004) however government &iked programs such as
Landsat and NAIP (National Agricultural Imagery gram) offer free imagery.

There are numerous decisions land managers needk® when selecting
appropriate methods for classifying vegetation saghtype of image (air photo vs.
satellite), image resolution (spatial and spectealyl mapping method (automated vs.
manual). These decisions need to be made in thtexdoof the manager’s objectives
(e.g. habitat mapping vs. timber inventory). Resk assessing these image and
software options will provide land managers witfoimation regarding the utility of
using high-resolution imagery coupled with objeaented classification software when

attempting to classify vegetation. The specifieeobves of this study were to (1)
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classify and map vegetation on a small, heterogenhewested landscape, (2) compare
the accuracy of a visual and field-based classiboamethod with an object oriented
classification method (Feature Analyst), and (3ppare the accuracy of classifying

vegetation using three high spatial resolution§00aL60, and 1.0 m) digital images.



2. Materials and methods
2.1. Study area

This study was conducted on the L.W. Schatz Detnatisn Tree Farm located
in Maple Creek, California (Fig. 1). The 148-heetaite extends from 40°46'49” N to
40°45’56 N latitude and 123°52'21” W to 123°5123 W longitude (T 5N, R 3E,
Section 32). It ranges in elevation from 140 t0 48 and is underlain by the Franciscan
Formation, a subduction complex consisting of aecrédragments of oceanic crust and
forearc sediments (Aalto and Harper, 1989).

Originally consisting of old-growtRseudotsuga menziesirest, the land was
logged in the early 1950’s (Schatz 2007, persooadraunication). It has since
experienced a mixture of natural recovery and mamagt resulting in a heterogeneous
landscape mosaic typical of many northwestern fereslay (Halpern and Spies, 1995).

Current vegetation includes more than 150 spdgéippendix A) and is
dominated by #. menziesiand mixed hardwood overstory with an understory of
abundant evergreen shrubs and ferns. In addiidmetforested areas, the study site
contains upland prairie and a transmission right+ay where both native and non-native

perennial grasses dominate.
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Figure 1. Location and extent of study area (oatlim black) consisting of most of the W ¥ of Satt82 (T 5N, R3E), 17

miles east of Eureka, California.
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2.2. Field sampling of vegetation

A high-density sampling grid scheme of 2 plots lpectare was chosen to achieve
sufficient and balanced coverage of vegetationgy@®oper et al., 2006). A circular
plot shape was employed for all non-riparian pldectangular plots were used in
riparian corridors to characterize floral compasitaccurately (California Native Plant
Society, 2004). The maximum number of plots based/ha was 296. However, the
number sampled was 274 after eliminating plots lapging the property boundary and
those occurring on landslides and overly steepiterifwo hundred and forty-eight plots
were on upland, tree-dominated terrain (0.05 h&§ &rRradius); 8 plots were in riparian
zones (0.05 ha, various dimensions); and 18 plete \w shrub- or herb-dominated areas
(0.02 ha, 8.0 m radius). The plots covered appnaiely 9% of the tree farm.

Field data were collected from June-August, 20§i6gia modified rapid
assessment protocol (California Native Plant Sgc#204). Vegetation was sampled
using relevé plots and modified Braun-Blanquet camindance scaling (Table 1;
Braun-Blanquet, 1932; Lee, 2004). Ocular estimafgdant cover by species (within
plot or outside of plot but providing cover withime plot) were recorded for all strata, as
were average height (m) and total percentage dowstratum (Mueller-Dombois and
Ellenberg, 1974)Abiotic information recorded included: elevation)(rfopographic

position/landformpercent slope, aspect, and soil type (Colwell].e.860).



Table 1. Cover abundance scale used in oculanasts (Lee, 2004).

Cover Class Cover Range (%)
0.001-0.01
0.01-0.1
01-1
1-5
5-15
15-25
25 -50
50 - 75
75 - 100

O ONO O WN P
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2.3. Classification and Ordination

Vegetation data were analyzed using several nawitite approaches. Species
with less than 1% total cover on the site were negda priori to prevent outlier effects
(McCune and Grace, 2002). Riparian plots wereuthetl in the overall analysis due to
similarities in dominant vegetation with non-rigariunits. Data were grouped into
possible plant associations using a hierarchicadteting algorithm (Euclidean distance,
Ward’s linkage method) contained in PC_ORD (McCané Grace, 2002). This method
merges individual plots into groups based on sgesiimilarity. Resultant groups were
then pared down through indicator analysis. Dateeviurther analyzed via comparisons
of species abundance and constancy within and eetgmups.A Nonmetric
Multidimensional Scaling ordination was performedurther reduce the data set and
graphically depict ecological relationships amotg$

The naming convention ik Manual of California Vegetatio(Gawyer and
Keeler-Wolf, 1995) was used when assigning plo@lltance and associations.
Dominant species were defined as those havib§% relative cover and frequency

across all plots within a vegetation type.

2.4. Image Acquisition and Processing
Three images were acquired for analysis (Fig.()e multispectral, 4-band (0.45
—0.90 m) airborne image with 0.15 m spatial resolutiors\@aquired on June 22, 2006

for use in reference map creation and automatedrieaxtraction. A multispectral,



0 05 WMiles

Figure 2. Digital images (and associated pixelltggm) used in analysis. Aerial image acquiredlane 22, 2006,
Quickbird image acquired July 28, 2006, NAIP imaggquired June 15, 2005. The outline of the stutdyappears in
red.

[
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4-band (0.45 — 0.90m) QuickBird satellite image of 0.6m spatial resmn acquired

July 28, 2006 by Digital Globe, and a natural cddrand (0.45 — 0.69m) NAIP 1 m
spatial resolution aerial image acquired June @852y U.S. Department of Agriculture
Farm Services Agency were used in automated featdraction only.

The QuickBird image was orthorectified in ArcMaging a 10 m digital elevation
model and rational polynomial coefficients (Barlilaret al., 2004). All other images
were georeferenced and orthorectified by the pevidmage radiances were not
atmospherically corrected (Lillesand et al., 20@glYimes series analysis of consecutive
image data was not required for this study andiléetanformation on the atmospheric

conditions at the time of overpass was not avaslabl

2.5. Vegetation Mapping

Vegetation polygons were visually interpreted digitized in ArcMap using the
0.15 m resolution aerial image and labeled toratkaand association. The minimum
mapping unit (MMU) was 1000 fr{approximately 2 tree-dominated ground plots) and
was chosen in order to retain detail while captystand-level characteristics (Stohlgren
et al., 1997). Vegetation polygons were laid oherremaining two images and adjusted
to account for shifts in images due to error, artetification or georeferencing

limitations. Polygons not containing at least gneund plot were verified in the field.

2.6. Automated Feature Extraction

Supervised classification of imagery was performedautomated feature

extraction using Feature Analyst (Visual Learningt®ms 2006) software. Training
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polygons were randomly selected from the referenap using Spatial Analyst in
ArcGIS 9.1 to a standard of 5 or fewer polygong(agimately 40%) per vegetation
type. All vegetation classes were included in esgmn-based classification.
Vegetation classes covering < 1% of the study ar¢hose with only one polygon were
masked in the alliance-based classification. $eteimput parameters included pre-
aggregation to 500 pixels and a representatioemaeippropriate for stand-level classes
(Fig. 3; Vanderzanden and Morrison, 2003). Alle&dgion data were used in map
validation.

One classification using all available spectralds|awas executed with the
association reference map. Several classificatvare executed with the alliance
reference map. Band selection methods for allianae analyses included: use of all
available spectral bands, removal of the VNIR bantthe Quickbird and aerial images,
application of an NDVI to the Quickbird and aeiirakges, and application of only the
spectral bands exhibiting the best average sepigyads determined by a transformed
divergence statistic (Swain and Davis, 1978; ERDMBGINE, 2005). Overall, the
greater the transformed divergence, the greatesttiistical distance between training
classes and the higher the probability of corradsification (Lillesand et al., 2004). In
general, if a result is greater than 1,900 thercthgses can be separated; between 1,700
and 1,900 the separation is fairly good. Below)@,ihe separation is poor (Jensen,

2000).



Figure 3. Feature Analyst input pattern represemtaPixels shown in blue represent those includezhalysis.

Vi



15

To keep spatial resolution constant and test fafact from the infrared band, the
Quickbird and aerial images were resampled to ha,al images were run with all

available spectral bands.

2.7. Accuracy Assessment

Correct vs. incorrectly classified polygons weteritified in the output maps
using zonal statistics in Spatial Analyst (Envirantal Systems Research Institute,
2006). If the majority of pixels in the output pgbn matched the reference polygon then
the entire polygon was identified as correct. Aarnty assessment rule was chosen to
account for the inherent heterogeneity within vagieh classes (Sawyer and Keeler-
Wolf, 1995) and because more traditional (per-piaskessments of classification
accuracy are often inappropriate for use in thgstems (Yu et al., 2006).

Map accuracies are presented in the form of anrenatrix’ which includes
measures of producer’s, user’s, and overall acguisiory and Congalton, 1986; Foody,
2002). Producer’s accuracy, or error of omissiodicates the probability of a reference
sample being correctly classified by the softwddser’s accuracy, or error of
commission, indicates the probability that a pdaksified on the map represents that
category on the ground (Congalton and Green, 19R8ppa coefficienta, were
calculated for overall map accuracy to compensatesihdom chance agreement

(Rosenfield and Fitzpatrick-Lins, 1986).



3. Results

Twenty-five vegetation associations (Table 2; Bigand 13 vegetation alliances
were classified (Table 3; Fig. 5) and mapp&gqguoia sempervireqdantations were
included as classes in the association map asateey subcanopy dominanRinussp.
plantations were included as classes in the alisuas they were canopy dominant. The
study site is primarily dominated B, menziesii - Abies grandi&lnus rubra,andP.
menziesii - Lithocarpus densifloratasses. Species richness per alliance varied &o
low of four in aBaccharis pilularisalliance to a high of 21 inRraxinus latifoliariparian
alliance (Table 3).

The output association maps (Fig. 6) had verydoerall accuracies across all
images. The Quickbird output had the highest dvacauracy (14%), followed by the
NAIP (11%), and the air photo (3%). When usingydhbands per image (R, G, B) the
Quickbird output accuracy decreased to 3% whileathehoto output accuracy increased
to 7%.

Output maps of alliances (Fig. 7) had much higherall accuracies across
image types (Table 4) than association output mape Quickbird output was most
accurate (69%, k= 0.43), followed by air photo (48%,.k= 0.33), and lastly NAIP
(37%, Knat= 0.28)when all available bands were included in the aislfTable 4,
column a). The air photo and Quickbird alliance mdpcreased in overall accuracy after
removal of the infrared spectral band (Table 4uwi b). Analyses using bands with the
highest spectral separation had mixed results. Quiekbird and air photo accuracies

decreased while the NAIP accuracy increased by #&lé€ 4, column c).

16



Table 2. Relative cover, frequency, and specidsiass of associations.

Associations Relative Number  Mean species Standard
cover (%) of richness deviation of
polygons species richness
Umbellularia californica - Alnus rubra 12.6 16 16 5
Lithocarpus densiflorus 12.1 19 13 4
Umbellularia californica - Pseudotsuga menziesii 10.3 21 20 4
Pseudotsuga menziesii - Abies grandis 8.4 11 22 5
Lithocarpus densiflorus - Alnus rubra - Umbellukacalifornica 7.7 7 15 5
Pseudotsuga menzieseii/Rubus ursinus 6.9 11 19 7
Pseudotsuga menziesii/Polystichum munitum 6.5 9 20 3
Abies grandis - Pseudotsuga menziesii 6.3 15 20 4
Pseudotsuga menziesii - Lithocarpus densiflorus 6.1 12 21 6
Lithocarpus densiflorus - Umbellularia californicaPseudotsuga
menziesii 3.9 10 14 4
Alnus rubra 3.7 11 18 4
Transmission right-of-way 2.5 3 13 3
Tsuga heterophylla 2.1 1 9 3
Pseudotsuga menzieseii/Ceanothus thyrsiflorus 2.1 4 14 1
Lithocarpus densiflorus - Sequoia sempervirens 2.0 4 15 5
Pinus ponderosa 1.2 2 21 0
Introduced perennial grasslands 1.2 3 14 1
Pseudotsuga menziesii - Sequoia sempervirens 0.9 2 21 7
Acer macrophyllum 0.9 5 23 6
Fraxinus latifolia 0.7 5 21 2
Salixsp. 0.7 4 22 11
Ceanothus thyrsiflorus 0.6 3 18 2
Pinus radiata 0.3 1 24 0
Baccharis pilularis 0.1 2 4 0
Quercus garryana 0.1 1 17 0

LT
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— Baccharis pilularis

2 Acer macrophyllum

mm Pseudotsuga menzieseii - Umbellularia californica
— Umbellularia californica - Alnus rubra

— Ceanothus thyrsiflorus

[ Pseudotsuga menzieseii- Sequoia sempervirens
— Pseudotsuga menzieseii - Rubus ursinus

mm Pseudotsuga menzieseii- Ceanothus thyrsiflorus
mm Pseudotsuga menzieseii- Lithocarpus densiflorus
mm Pseudotsuga menzieseii - Abies grandis

mm Pseudotsuga menzieseii - Polystichum munitum
—Abies grandis - Pseudotsuga menzieseii
—Introduced perennial grasslands

— Pinus radiata plantation

mm Fraxinus latifolia

— Transmission right-of-way

mm Pinus ponderosa plantation

— Quercus garryana

r—1Alnus rubra

== Salix sp.

—Lithocarpus densiflorus

mm Lithocarpus densiflorus - Alnus rubra - Umbellutagalifornica
mm Lithocarpus densiflorus - Umbellularia californie@seudotsuga menzieseii
mm Lithocarpus densiflorus - Sequoia sempervirens
777 Tsuga heterophylla

Figure 4. Thematic map showing 25 vegetative aggons on study site. Areas in black were masiedon-

vegetation during analysis.
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Table 3. Relative cover, frequency, and specidséass of alliances (*indicates vegetation classes in automated feature

extraction).
Alliances Relative Number of = Mean species Standard
cover (%) polygons richness deviation of
species
richness
Pseudotsuga menziesii - Abies grahdis 28.1 26 21 4
Alnus rubra - Umbellularia californica - Lithocargudensiflorus* 24.7 19 16 4
Lithocarpus densiflorus - Umbellularia californicadPseudotsuga menziesii* 19.7 16 14 5
Pseudotsuga menziesii - Umbellularia californica* 13.0 19 20 4
Pseudotsuga menziesii* 6.9 14 19 6
Introduced perennial grassland* 3.6 6 13 2
Pine plantation* 1.0 2 21 4
Fraxinus latifolia 0.8 5 21 2
Acer macrophyllum 0.7 6 23 6
Salixsp. 0.7 4 22 11
Ceanothus thyrsiflorus 0.6 3 18 2
Baccharis pilularis 0.1 2 4 0
Quercus garryana 0.1 1 17 0

6T
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~Quercus garryana
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Figure 5. Thematic map showing seven vegetatiieaks used in classification. Areas in blackev@asked as non-
vegetation during analysis.
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Figure 6. Feature analyst output association rogpsiage type. Areas in black were masked as
non-vegetation during analysis.
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Figure 7. Feature analyst output alliance mapsiage type. 7 vegetative alliances used in
classification are shown. Areas in black were redsks non-vegetation during analysis.

44



Table 4. Overall alliance output map accuraciesiage type and analysis. Band numbers used in sinatyparentheses.

VNIR removed

Image Spatial All available bands (3-band) Select bands NDVI
Resolution a. b. C. d.

NAIP (1.00m) 0.3711,2,3) n/a 0.412,3) n/a
Quickbird (0.60m) 0.691,2,3,4) 0.60(1,2,3) 0.47(2,3) 0.54(1,2,3,4,5)
Air photo (0.15 m) 0.481,2,3,4) 0.27(1,2,3) 0.33(1,3,4) 0.37(1,2,3,4,5)

€e
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The addition of the commonly used NDVI also did moprove overall accuracy (Table
4, column d). Overall accuracies decreased foQthiekbird and aerial images when
resampled to 1m, implying a positive influence eowacy from the VNIR band (Fig. 8).
The highest overall accuracies for the Quickbird aarial output maps were produced
through the inclusion of all 4 bands and no furtim@nipulation. The highest overall
accuracy for the NAIP output map (41%) was produbeodugh the removal of band 1.
The error matrices for each image (Table 5) retlestithe pine plantation and
introduced perennial grassland classes generaillyhehighest user and producer
accuracies. The pine plantations were misclassifiewever, aé. rubrain the aerial
output map. There was little consistency with ottlass accuracies or relative cover
values (Table 6) across image types. Ahaubradominant class had high user and
producer accuracies but was confused withPthmenziesi Umbellularia californica
TheP. menziesii — U. californicandP. menziesk L. densiflorusclasses performed
differently across images, however themenziesi- L. densiflorusclass had relatively
high user accuracies suggesting that, when idedtithese classes were labeled
appropriately TheP. menziesiclass had the lowest producer accuracies (5-36&%) an

was frequently confused with the mixBdmenziesk- A. grandisclass.
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Figure 8. Overall accuracies of original and imagessaimpled to 1 m. Number of spectral
bands in parentheses.
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Table 5. Error matrices for alliance map classtfararesults by image type. Values
represent area @nclassified. Vegetation classes for the L.W. Szisandy site
include: (1) Alnus rubra - Umbellularia californiedithocarpus densiflorus (A-
Uc-Ld); (2) Pseudotsuga menziesii (Pm); (3) Pseswdyzt menziesii -
Umbellularia californica (P -Uc); (4) Pseudotsuganziesii - Abies grandis (Pm-
AQ); (5) Lithocarpus densiflorus - Umbellularia iéainica - Pseudotsuga
menziesii (Ld-Uc-Pm); (6) Introduced perennial gtasds (IPG); and (7) Pine
plantation (P).

Classified data Reference data
User

Class A-Uc-Ld Pm Pm-Uc Pm-Ag Ld-UcPm IPG P (%)
(1) Classification error matrix for the aerial pb@0.15 m, 4-band)

1112
A-Uc-Ld 294645 21856 66020 49650 182548 0 6 47
Pm 0 4511 0 30454 0 0 0 13
Pm-Uc 6606 12884 74008 145180 0 0 0 31
Pm-Ag 43939 59141 37805 192590 52480 0 3750 49
Ld-Uc-Pm 0 0 0 2 43069 0 0 100
IPG 0 0 0 0 0 54014 0 100
P 0 0 0 0 0 0 0 0
Producer (%) 85 5 42 46 15 100 0
Overall (%) 48
Khat 0.33
(2) Classification error matrix for the Quickbinthage (0.60 m, 4-band)
A-Uc-Ld 248618 0 47270 2 0 0 0 82
Pm 0 5707 0 0 0 0 0 100
Pm-Uc 0 0 12261 14645 0 0 0 46
Pm-Ag 68084 29170 68856 348958 0 595 0 69
Ld-Uc-Pm 28489 61969 49446 54271 278098 0 0 59
IPG 0 0 0 0 0 53419 0 100

1487
P 0 1545 0 0 0 0 6 90
Producer (%) 70 6 7 85 100 99 100
Overall (%) 69
Khat 0.43
(3) Classification error matrix for the NAIP ima@e0 m, 3-band)
A-Uc-Ld 68111 3821 0 0 0 0 0 95
Pm 658 35886 3777 48625 15961 0 0 34
Pm-Uc 275181 50215 174056 369251 40984 0 0 19
Pm-Ag 0 0 0 0 0 0 0
Ld-Uc-Pm 0 6927 0 0 173858 982 0 96
IPG 1240 0 0 0 47295 52429 0 52

1487
P 0 1544 0 0 0 603 6 87
Producer (%) 20 36 98 0 63 97 100
Overall (%) 37

Khat 0.28




Table 6. Relative cover values of alliancesHeature Analyst output maps by image type.

Aerial Quickbird  NAIP image Reference map

Alliance image image
Pseudotsuga menziesii - Abies grandis 24.0 33.1 0.3 28.1
Alnus rubra - Umbellularia californica - 30.4 171 9.0 23.7

Lithocarpus densiflorus

Lithocarpus densiflorus - Umbellularia 6.9 31.0 11.8 18.7
californica - Pseudotsuga menziesii
Pseudotsuga menziesii - Umbellularia

californica 20.8 9.4 50.8 12
Pseudotsuga menziesii 14.5 1.8 16.9 6.6
Introduced perennial grassland 3.3 4.3 8.1 3.6
Pine plantation 0.2 3.3 3.2 1

LC
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When theP. menziesiandP. menziesi A. grandisclasses were combined into a “mixed
conifer” class the overall accuracies of the awmtphQuickbird, and NAIP images
increased to 54%, 72%, 41%, respectively.

Differences in vegetation class accuracies wertiated using a non-parametric
Kruskal-Wallis ANOVA procedure, followed by Krusk#allis Z and Bonferroni
correction. Significant differences (p <0.05) beén the accuracies of vegetation types

for each image were detected (Figure 9).

3.1. Sources of Error

Spectral separation of classes was calculateallftiree images using the
transformed divergence statistic (Swain and Da838; ERDAS IMAGINE, 2005).
Results showed that all images did not higeal spectral separation implying spectral
overlap between classes. The Quickbird data hatiekt statistical separation between
categories. All images had similar minimum valuésgeneral, the classes with the
highest producer and user accuracies had the higpestral separation (Appendix B).
The introduced perennial grass class was the rpestrally distinct with the highest
transform divergence values across all imagegp(ato = 995, Quickbird = 1432, NAIP
=503 average TD). Classes that were confusedeaith other typically had
transformed divergence values <100 but were naayswhose with the highest spectral
overlap. For example, in the aerial image the piaatation class was confused with the
Alnus rubra - Umbellularia californica - Lithocargudensifloruslass (TD = 227) and

not thePseudotsuga menzieslass (TD = 17).
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Figure 9. ANOVA test for differences in vegetatidass accuracy across image types.
Different letters above the bars indicate significdifferences in Tukey post-hoc
comparisons between the classes. Vegetation evdaetefined in Table 5.
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Increasing internal variability in vegetation das is correlated with decreasing
classification accuracy (Cushnie, 1987; Cochraf@p® Higher intra-class variability
lessens the separation between classes, makin@tilcatistinction difficult. The average
standard deviations of the digital numbers withaigetation types revealed differences
across images. The air photo has the most inassalariability (31.1) which may be due
to the high number of pixels. It did not, howeusaye the lowest accuracies when all 4
bands were used, implying an important contribufrom the VNIR band. The
Quickbird image had the least amount of intra-clesgance (11.2) and the highest
accuracies.

Although factors such as polygon size, total vetimtacoverage, and number of
training polygons have been shown to influence mxyu(Foody et al., 1995; Foody and
Arora, 1997; Staufer and Fischer, 1997; Ellis anahg/ 2006; Foody and Mathur, 2006),
logistic and linear regressions of these variallldsot result in significant findings with
the exception of the NAIP image where producer emmuincreased as class coverage
decreased (p = 0.03Yhis relationship is exemplified in the pine plamda high

accuracies despite low cover (1%) and low numberaxriing polygons (2).



4. Discussion

In all cases, the Quickbird image produced thédsg levels of overall accuracy
when compared to the air photo and the NAIP imdgeage processing techniques, such
as resampling, inclusion of an NDVI, selection ahts with the highest transformed
divergence values, or use of natural color band$3(HB) alone, did not alter this
outcome. These techniques did, however, gendmailgr the overall and class
accuracies of the Quickbird and air photo. Thénegg overall accuracies for these two
images were produced using all available band® highest accuracy for the NAIP
image, however, resulted from the removal of theeldand (450 — 520 nm). Blue bands
can add unwanted noise to an image oftentimesalagrtospheric scattering (Kimes et
al., 2006). The NDVI did not produce higher acciga since this index generally
compensates for terrain effects such as surfape séspect, or elevation, (Lillesand et
al., 2004) and these factors were not significadifferent between vegetation types.
Additionally, the addition of the NDVI may have aladded unwanted noise through the
inclusion of redundant reflectance values.

What accounts for these differences in image perdoce? Generally speaking it
results from the software’s ability to discriminditetween classes. Spectral separation
and internal variability of classes were predomirfaators influencing class discernment
(Cushnie, 1987; Cochrane, 2000). An increase maddiass variability causes a reduction

of statistical separability between classes (Cueshifi87; Yu et al., 2006).
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The Quickbird image had the highest overall tramskd divergence values, the
lowest intra-class variability, and the highestuaacies. This pattern was also found
with the pine plantation and introduced perenniakg vegetation types. High accuracies
occurred in these classes despite their low peaigendf vegetative cover, as well as
small number of training polygons (Foody, 2002; Bdwyiet al., 2006) suggesting that
spectral separation supersedes these other variabdéfect.

Another mechanism behind image performance retatspatial resolution. It
can be difficult to assess the appropriate thresfayl spatial resolution. Too fine a
resolution may increase the internal variabilityhin homogeneous land cover units too
much (Woodcock and Strahler, 1987; Aplin et al972;9Greenberg et al., 2006; Yu et al.,
2006). At too coarse a resolution a number of tegmn types may be combined within
one pixel, resulting in a spectrally noisy signadl gielding poor classification results
(Cushnie, 1987; Yu et al., 2006; Johansen et @072 The results of the 3-band input
trials imply that a 0.6 m spatial scale may be baged for alliance-level classification,
followed by 1 m and finally 0.15 m. The higheraksgion aerial photo may aid in visual
interpretation, but it is not a ‘best fit' when ngiautomated classifiers.

Accuracies less than 80% may be due to land mamaggehistory and to the early
seral stages in this landscape (Jiang et al., 20042005; Rapp et al., 2005). My study
site was a heterogeneous mosaic of young foresttailon, and remnant old-growth
trees typical of post-logged coniferous forestthim Pacific Northwest today (Spies et al.,
1994; Jiang et al., 2004). Due to fragmentatiotheflandscape and resultant growth

patterns, vegetation classes were rarely compdssalaly one or two dominant species,
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such as a pine or grass, but were instead a nugrofer and hardwood species of
varying ages and sizes. For example, some clds$ieed by the Federal Geographic
Data Committee (1997) have differences of 10% ¢mer in some of their alliances
which would not consistently produce a significenénge in spectral signal (Greenberg
et al., 2006). Dissimilarities in structural dttrites of forest stands may have a greater
effect on reflectance characteristics than treeispecomposition (Lefsky and Cohen,
2003). Additionally, evergreen forest types hagerbshown to lack unique spectral
reflectance characteristics due to limited phenckdglifferences (Lillesand et al., 2004).
In my study the most ecologically mixed classesléehto be the most confused.
Although some interpreters emphasize the importahseectrally ‘pure’ classes, there
may be more inherent variability within one treewen than between species or classes
(Leckie et al., 1992). Thus, prioritizing classimgeneity may produce ecologically
meaningless polygons.

Categorical scale is another important factor assification (Marceau et al.,
1994; Ju and Gopal, 2005; Rapp et al., 2005). ri&p of associations had extremely
low accuracies likely due to large number of inglasses and the presence of subcanopy
vegetation (Greenberg et al., 2006). To date, LRDFata has been most effective in
directly measuring three-dimensional distributiofglant canopy and sub-canopy
(Lefsky and Cohen, 2003) thus a laser-altimetry noay be more suited for this level of
detail. Other studies (Greenberg et al., 2006glval., 2006) have generally shown low
accuracies when attempting to classify alliancesabge of the influence of sub-canopy

vegetation, small sample sizes, and species cordmTe.
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Additional issues affecting accuracy not directtplered in my study include
positional error of GPS and imagery (Foody, 208&)poral differences in image
acquisition (Lefsky and Cohen, 2003), join linesnnsaicked aerial photos (Lefsky and
Cohen, 2003), as well as accuracy assessment m@lopal and Woodcock, 1994;
Stehman, 1997; Foody, 2002; Liu et al., 2007).

Overall accuracies were somewhat low with fine esctdssifications, and only one
image approached the commonly used 80% accuragesttbid (Environmental Systems
Research Institute and The Nature Conservancy,)1982e software produced the
highest accuracies when utilizing all availabledm@rthus removing the need for image
enhancement or other interpreter-based processuhgitjues (Hay et al., 2005).

The specific algorithms employed by Feature Astadpftware included a type of
neural network classifier that considers spatialtext, or image ‘texture’, in addition to
the brightness values of the pixels (Visual Leagrfsystems, 2006). Neural network
classifiers have been successful in supervisegititzgion of community data owing in
part to their non-parametric nature which is appede for non-normally distributed data
( ernd and Chytry, 2005), as well as their abilityetarn by example and generalize
(Foody and Arora, 1997). Although artificial nelunatworks have given accurate class
predictions compared to other supervised methaslsdhe also accused of having a
‘black-box’ approach (erna and Chytry, 2005) which hides the underlyiracpss.
Foody and Arora (1997) found that neural netwodssifiers performed well on small
training sets, however this software could not lkesclasses in the alliance map that

were represented by only 1 polygon, regardlesszef sTherefore, types that are ‘rarer’
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such as'suga heterophyllecould not be identified through this process,,ainchn be
difficult to have enough polygons for training arch a small scale.

Additionally, the input representation pattern eoyeld was limited in pixel number
(100 per band). Therefore, less area was coveltbceach pass in the higher resolution
images. This resulted in certain features of miistshape, such as the electrical right-of-
way, being misclassified in the association mapusl processing time would be
extended by the necessity of running several passasiploying different input patterns

to extract various shapes.



5. Conclusions

Object-oriented software may not be the ideal metio achieve high accuracy
for alliance-level classification and mapping. éwnated feature extraction has been
shown to perform better in more homogeneous lamescar at coarser categorical
scales. To date, remote sensing is not as acamdtprecise in measuring vegetation
that an investigator utilizing manual and field-e&snapping techniques can achieve
(Greenberg et al., 2006). Thus, choosing this okt classification should be weighed
against considerations such as cost and time hionis

Spatial and spectral resolutions are importardpeters to consider when
choosing imagery for vegetation mapping. It isenis use imagery at a spatial resolution
that is appropriate for both the features beingsifeed (Woodcock and Strahler, 1987)
and the method of classification. In short, higbeatial resolution does not always
produce the highest map accuracies with automatttauds, and lower spatial resolution
is not ideal for manual mapping. Additionally, thecessing time associated with each
image type should be considered as larger filessizay lead to cumbersome hardware
demands.

More work is needed to explore the utility of vémngh spatial resolution imagery
in the field of vegetation classification and maygpi As satellites continue to offer finer
pixel grains and additional spectral bands, theyfast becoming a viable choice over
aerial imagery which is frequently cost-intensivadditionally, more studies classifying

second-growth heterogeneous vegetation to fingyodatal scales are needed to
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adequately assess the application of object-@ikalassification procedures on sites

reflecting the changing landscape.



References

Aalto, K.R., Harper, G.D., 1989. Geologic evolutminthe northernmost coast ranges
and western Klamath mountains, California. AmeriGaophysical Union,
Washington, DC.

Anderson, K.R., Harper, G.D., Roach, J.T., WitnkeE., 1976. A land use and land
cover classification system for use with remotesseidata. USGS Survey,
Government Printing Office, Washington, DC.

Aplin, P., Atkinkson, P.M., Curran, P.J., 1997.d&spatial resolution satellite sensors for
the next decade. Int. J. of Remote Sens. 18, 38833

Asner, P.G., Hicke, J.A., Lobell, D.B., 2003. Péxgbanalysis of forest structure:
Vegetation indices, spectral mixture analysis aambpy reflectance modeling.
In: Wulder, M.A., Franklin, S.E. (Eds.), Remote Sieg of Forest Environments:
Concepts and Case Studies. Kluwer Academic Pulnisherwell,
Massachusetts, pp. 13-46.

Barbarella, M., Lenzi, V., Zanni, M., 2004. Integjom of airborne laser data and high
resolution satellite images over landslides rigkaar Int. Arch. .Photogramm.
Remote Sens. Spatial Info. Sci. 35, 945-950.

Benson, B.J., MacKenzie, M.D., 1995. Effects ofssgrspatial resolution on landscape
structure parameters. Lands. Ecol. 10, 113-120.

Braun-Blanquet, J., 1932. Plant sociology. McGrai;New York, New York.

California Native Plant Society, 2004. Californiative Plant Society relevé protocol.
California Native Plant Society, Sacramento, Catiia.

Carleer, A., Wolff, E., 2004. Exploitation of velygh resolution satellite data for tree
species identification. Photogramm. Eng. Remotes SEh, 135-140.

ernd, L., Chytry, M., 2005. Supervised classificatof plant communities with
artificial neural networks. J. Veg. Sci. 16, 407441

Chubey, M.S., Franklin, S.E., Wulder, M.A., 200@j€xt-based analysis of lkonos-2

imagery for extraction of forest inventory paramgst@®hotogramm. Eng. Remote
Sens. 72, 383-394.

38



39

Cochrane, M.A., 2000. Using vegetation reflectavexgéability for species level
classification of hyperspectral data. Int. J. ofrieée Sens. 21, 2075-2087.

Colwell, W., DeLapp, J., Gladish, E., 1960. Caliiar Cooperative Soil Vegetation
Survey, Humboldt County. In, Soil - Vegetation Magries. Pacific Southwest
Forest & Range Experimental Station (USFS).

Congalton, R.G., Green, K., 1999. Assessing tharacy of remotely sensed data:
principles and practices. Lewis Publications, BBedon.

Cooper, A., McCann, T., Bunce, R.G.H., 2006. THeience of sampling intensity on
vegetation classification and the implicationsdarvironmental management.
Environ. Cons. 33, 118-127.

Cushnie, J.L., 1987. The interactive effect of spaesolution and degree of internal
variability within land-cover types on classifiaati accuracies. Int. J. of Remote
Sens. 8, 15-29.

Ellis, E.C., Wang, H., 2006. Estimating area erfordine-scale feature-based ecological
mapping. Int. J. of Remote Sens. 27, 4731-4749.

Environmental Systems Research Institute, 2006GF8®O: Using ArcGIS Desktop.
ESRI Press, Redlands, California.

Environmental Systems Research Institute and Therdl&onservancy, 1994. USGS-
NPS vegetation mapping program: field methods égetation mapping. United
States Department of the Interiro, Washington, D.C.

ERDAS IMAGINE, 2005. Erdas Imagine Field Guide. E&BInc., Atlanta, Georgia.

Federal Geographic Data Committee, 1997. Veget&lansification Standard: FGDC-
STD-005, U.S. Geological Survey, Reston, Virginia.

Foody, G.M., 2002. Status of land cover classiftcaticcuracy assessment. Remote
Sens. Environ. 8, 185-201.

Foody, G.M., Arora, M.K., 1997. An evaluation oinse factors affecting the accuracy of
classification by an artificial neural network..ldt of Remote Sens. 18, 799-810.

Foody, G.M., Mathur, A., 2006. The use of smalirtirag sets containing mixed pixels
for accurate hard image classification: Trainingwired spectral responses for
classification by a SVM. Remote Sens. Environ. 1073-189.



40

Foody, G.M., McCulloch, M.B., Yates, W.B., 1995aSsification of remotely sensed
data by an artificial neural network: issues raldtetraining data characteristics.
Photogramm. Eng. Remote Sens. 61, 391-401.

Gopal, S., Woodcock, C.E., 1994. Theory and methadaccuracy assessment of
thematic maps using fuzzy sets. Photogramm. EngnoReSens. 60, 181-188.

Greenberg, J.A., Dobrowski, S.Z., Ramirez, C.MJJ,TlL., Ustin, S.L., 2006. A
bottom-up approach to vegetation mapping of theeLBkhoe Basin using
hyperspatial image analysis. Photogramm. Eng. Rei®ens. 72, 581-589.

Hall, R.J., 2003. The roles of aerial photographforestry remote sensing image
analysis. In: Wulder, M.A., Franklin, S.E. (Edsemote Sensing of Forest
Environments: Concepts and Case Studies. Kluwedé&mwdéc Publishers,
Norwell, Massachusetts, pp7-76.

Halpern, C.B., Spies, T.A., 1995. Plant speciegemity in natural and managed forests
of the Pacific Northwest. Ecol. Appl. 5, 913-934.

Hay, G.J., Castilla, G., Wulder, M.A., Ruiz, J.R005. An automated object-based
approach for the multiscale image segmentatioomst scenes. J. Appl. Earth
Obs. Geoinfo. 7, 339-359.

Jensen, J.R., 2000. Remote Sensing of the EnvinoinAe Earth Resource Perspective.
Prentice Hall, Upper Saddle River, New Jersey.

Jiang, H., Strittholt, J.R., Frost, P.A., Slos$¢C., 2004. The classification of late seral
forests in the Pacific Northwest, USA using LandsaM+ imager. Remote Sens.
Environ. 91, 320-331.

Johansen, K., Coops, N.C., Gergel, S.E., Strang&€007. Application of high spatial
resolution satellite imagery for riparian and faresosystem classification.
Remote Sens. Environ.110, 29-44

Ju, J., Gopal, S., 2005. On the choice of spatidlcategorical scale in remote sensing
land cover classification. Remote Sens. Environ 62677.

Kimes, D.S., Ranson, K.J., Sun, G., Blair, J.BQ&Predicting LIDAR measured forest
vertical structure from multi-angle spectra datanm®te Sens. Environ. 100, 503-
511.



41

Leckie, D.G., Gourgeon, F.A., Tinis, S., Nelson,Burnett, D., Paradine, D., 2005.
Automated tree recognition in old growth conifearsts with high resolution
digital imagery. Remote Sens. Environ. 94, 311-326.

Leckie, D.G., Yuan, X., Ostaff, D.P., Piene, H.,dlaan, D.A., 1992. Analysis of high
resolution multispectral MEIS imagery for sprucellworm damage assessment
on a single tree basis. Remote Sens. Environ.2®186.

Lee, C., 2004. Vegetation alliances and associsndithe Whiskeytown National
Recreation Area. Master's thesis. Department oé$tor & Watershed
Management. Humboldt State University, Arcata, fGatia.

Lefsky, A.M., Cohen, W.B., 2003. Selection of ReaiptSensed Data. In: Wulder, M.A.,
Franklin, S.E. (Eds.), Remote Sensing of Foresimanments: Concepts and
Case Studies. Kluwer Academic Publishers, Noriissachusetts, pp. 13-46.

Lillesand, T.M., Kieffer, R.W., Chipman, J.W., 200Bemote Sensing and Image
Interpretation, 8 edition. John Wiley & Sons Inc., New York, New ¥or

Liu, C., Frazier, P., Kumar, L., 2007. Comparat@ssessment of the measures of
thematic classification accuracy. Remote Sens.ranyvil07, 606-616.

Lu, D., 2005. Integration of vegetation inventoataland Landsat TM image for
vegetation classification in the western Brazilfemazon. For. Ecol. Manage.
213, 369-383.

Marceau, D.J., Howarth, P.J., Gratto, D.J., 19%m&e Sensing and the measurement
of geographical entities in a forested environm&he scale and spatial
aggregation problem. Remote Sens. Environ. 49,(83-1

McCune, B., Grace, J.B., 2002. Analysis of ecolaggtommunities. MjM Software,
Gleneden Beach, Oregon.

Mueller-Dombois, D., Ellenberg, H., 1974. Aims dddthods of Vegetation Ecology.
John Wiley & Sons, Inc., New York, New York.

Mullerova, J., 2004. Use of digital aerial photqgrg for sub-alpine vegetation mapping:
A case study from the Krkonose Mts., Czech RepuBliant Ecology 175, 259-
272.

Rapp, J., Wang, D., Capen, D., Thompson, E., Lalser, T., 2005. Evaluating error
in using the national vegetation classificationteysfor ecological community
mapping in Northern New England, USA. Natural Ardaarnal 25, 46-54.



42

Ripley, B.D., 1996. Pattern Recognition and Netwtaiworks. Cambridge University
Press, London, England.

Rosenfield, G.H., Fitzpatrick-Lins, K., 1986. A ¢baent of agreement as a measure of
thematic classification accuracy. Photogramm. Regnote Sens. 52, 223-227.

Sandmann, H., Lertzman, K.P., 2003. Combining hmggelution aerial photography with
gradient-directed transects to guide field sampéind forest mapping in
mountainous terrain. For. Sci. 49, 429-443.

Sawyer, J.O., Keeler-Wolf, T., 1995. Manual of @ahia Vegetation. California Native
Plant Society Press, Sacramento, California.

Schatz, G., 2007. Personal Communication. 14343&/apeek Route, Korbel, CA
95550.

Song, M., Civco, D.L., Hurd, J.D., 2005. A compe#gtpixel-object approach for land
cover classification. Int. J. of Remote Sens. 23144997

Spies, T.A., Ripple, W.J., Bradshaw, G.A., 1994n&mwyics and pattern of a managed
coniferous forest landscape. Ecological Applicadidn555-568.

Staufer, P., Fischer, M.M., 1997. Spectral patteaognition by a two layer perceptron:
Effects of training set size. In: Kanellopoulos Wilkinson, G., Roli, F., Austin,
J. (Eds.), Neurocomputation in Remote Sensing Batdysis. Springer-Verlag,
Berlin, Germany, pp. 105-116.

Stehman, S.V., 1997. Selecting and interpretingsunes of thematic classification
accuracy. Remote Sens. Environ. 62, 77-89.

Stohlgren, T.J., Chong, G.W., Kalkhan, M.A., SchelD., 1997. Multiscale sampling of
plant diversity: Effects of minimum mapping unites Ecol. Appl. 7, 1064-1074.

Story, M., Congalton, R.G., 1986. Accuracy assessnfeuser's perspective.
Photogramm. Eng. Remote Sens. 52, 397-399.

Swain, M., Davis, S.M., 1978. Remote Sensing: Thar@itative Approach. McGraw-
Hill Inc., New York, New York.

USDA, 2002. Existing Vegetation Classification afidpping Technical Guide (Dratft).
USDA Forest Service, Washington, D.C.



43

USDA, 2007. The PLANTS Database (http://plantsaugav, 19 October 2007).
National Plant Data Center, Natural Resources Goasen Service, Baton
Rouge, Louisiana.

Vanderzanden, D., Morrison, M., 2003. High Resoltimage Classification: A Forest
Service Test of Visual Learning System’s Featuralpst. USDA Forest Service,
Salt Lake City, Utah.

Visual Learning Systems, 2006. Feature Analyst idard.1 for Arc GIS Reference
Manual. Visual Learning Systems Inc., Missoula, téoma.

Woodcock, C.E., Strahler, A.H., 1987. The factoscdle in remote sensing. Remote
Sens. Environ. 21, 311-332.

Wulder, M.A., Hall, R.J., Coops, N.C., FranklinES.2004. High spatial resolution
remotely-sensed data for the study of forest et¢esys Bioscience 54, 511-521.

Yildirim, A., Seker, D.Z., 2004. Country-based arsa¢ of the investment dimension of
the airborne and spaceborne imagery. In, ProcesedihgXth ISPRS Congress,
12-23 July 2004, Istanbul, Turkey.

Yu, Q., Gong, P., Clinton, N., Biging, G., Kelly,.M5chirokauer, D., 2006. Object-based
detailed vegetation classification with airborngtgpatial resolution remote
sensing imagery. Photogramm. Eng. Remote Sen3982811.



Appendix A. Vascular plant species found in stiabation. Nomenclature follows the
USDA PLANTS Database (USDA, 2007).

Family Species Common name
Aceraceae Acer macrophyllunfPursh bigleaf maple
Aceraceae Acer circinatumPursh vine maple
Anacardiaceae | Toxicodendron diversilobuifTorr. & Gray) Greene Pacific poison-oak
Apiaceae Daucus carotd.. wild carrot

Apiaceae Heracleum maximurBartr. COw parsnip
Apiaceae Osmorhiza chilensislook. & Arn. mountain sweet cicely
Apiaceae Sanicula crassicauliPoepp. ex DC. Pacific blacksnakeroot
Araliaceae Aralia californicaS. Wats. elk clover
Aristolochiaceae | Asarum caudaturhindl. wild ginger
Asteraceae Achillea millefoliumL. common yarrow
Asteraceae Adenocaulon bicoloHook. American trailplant
Asteraceae Baccharis pilularisDC. coyotebrush
Asteraceae Cirsium vulgare(Savi) Ten. bull thistle
Asteraceae Erechtites minimgPoir.) DC. coastal burnweed
Asteraceae Gnaphaliumsp. L. cudweed

Asteraceae Hieracium albiflorumHook. white hawkweed
Asteraceae Leucanthemum vulgateam. oxeye daisy
Asteraceae Madia elegan®. Don ex Lindl. common madia
Asteraceae Petasites palmatugit.) Gray coltsfoot

Asteraceae Taraxacum officinalé&s.H. Weber ex Wiggers dandelion
Berberidaceae | Achlys californicaFukuda & Baker California deer-foot
Berberidaceae Mahonia repengLindl.) G. Don Oregon grape
Berberidaceae | Vancouveria hexandréHook.) Morr. & Dcne. white insideout flower
Betulaceae Alnus rubraBong. red alder

Betulaceae Corylus cornutavar. californica (A. DC.) Sharp California hazelnut

Blechnaceae

Blechnum spican{L.) Sm.

deer fern

Boraginaceae

Plagiobothryssp. Fisch. & C.A. Mey.

popcorn flower

Caprifoliaceae

Lonicera hispidulgLindl.) Dougl. ex Torr. & Gray

honeysuckle

Caprifoliaceae

Sambucus racemosa

red elderberry

Caprifoliaceae

Symphoricarpos albud..) Blake

common snowberry

Caryophyllaceae

Stellaria medig(L.) Vill.

common chickweed

Celastraceae

Euonymus occidentalutt. ex Torr. varoccidentale

western burning bush

Clusiaceae Hypericum perforatunh.. common St. Johnswort
Cornaceae Cornus sericed.. American dogwood
Cucurbitaceae Marah oreganugTorr. ex S. Wats.) T.J. Howell coastal manroot
Cupressaceae Sequoia sempervireifsamb. ex D. Don) Endl. coast redwood
Cupressaceae Sequoiadendron giganteuinindl.) Buchh. giant sequoia
Cyperaceae Carex deweyan&chwein. Dewey's sedge
Cyperaceae Carex obnuptd&ailey slough sedge
Cyperaceae Carexsp.L. sedge

Cyperaceae Cyperus eragrostisam. tall flatsedge
Dennstaedtiaceae Pteridium aquilinum(L.) Kuhn bracken fern
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Appendix A. Vascular plant species found in stiabation. Nomenclature follows yhe
USDA PLANTS Database (USDA, 2007; continued).

Family

Species

Common name

Dipsacaceae

Dipsacus fullonunt..

Fuller's teasel

Dryopteridaceae

Athyrium filix-feminaL.) Roth

lady fern

Dryopteridaceae

Polystichum muniturfKaulfuss)

sword fern

Equisetaceae

Equisetum arvende

common horsetail

Equisetaceae

Equisetum hyemale var. affine(Engelm.) A.A. Eat.

giant scouring rush

Ericaceae Arbutus menziesRursh Pacific madrone
Ericaceae Arctostaphylos columbian@iper hairy manzanita
Ericaceae Gaultheria shallorPursh salal

Ericaceae Vaccinium ovatunfPursh evergreen huckleberry
Ericaceae Vaccinium parvifoliunSm. red huckleberry
Fabaceae Lathyrus spL. sweet-pea

Fabaceae Lotus corniculatug.. broadleaf birdsfoot trefoil,
Fabaceae Lupinus spL. lupine

Fabaceae Melilotus alba(L.) Lam. yellow sweetclover
Fabaceae Trifolium sp.L. clover

Fabaceae Vicia satival. spring vetch

Fagaceae Chrysolepis sempervirer&ellogg Hjelmqvist bush chinquapin
Fagaceae Lithocarpus densiflorugHook. & Arn.) Rehd. tanoak

Fagaceae Quercus garryan@ougl. ex Hook. Oregon white oak
Gentianaceae Centaurium muehlenberdiGriseb.) W. Wight ex Piper| Muhlenberg's centaury

Geraniaceae

Geranium dissecturi.

cut-leaved geranium

Grossulariaceae

Ribes bracteosuiougl. ex Hook.

stink currant

Grossulariaceae

Ribes menzieskursh

canyon gooseberry

Grossulariaceae

Ribes sanguineuursh

red-flowering currant

Hydrangeaceae

Whipplea modestaorr.

yerba de selva

Hydrophyllaceae

Hydrophyllum tenuipedieller

Pacific waterleaf

Hydrophyllaceae

Nemophila pedunculatdougl. ex Benth.

littlefoot nemophila

Hydrophyllaceae | Phaceliasp.Juss phacelia

Iridaceae Iris douglasianaHerbert Douglas iris
Iridaceae Sisyrinchium bellunS. Wats. blue-eyed-grass
Juncaceae Juncus patenk. Mey. spreading rush
Juncaceae Juncus spL. rush

Lamiaceae Mentha arvensis. wild mint
Lamiaceae Prunella vulgarisL. self heal
Lamiaceae Satureja douglasi{Benth.) Kuntze yerba buena
Lamiaceae Stachys rigiddNutt. ex Benth. varigida rigid hedge-nettle
Lauraceae Umbellularia californica(Hook. & Arn.) Nutt. California bay
Liliaceae Chlorogalumsp.Kunth soap plant
Liliaceae Clintonia andrewsiand orr. bead lily

Liliaceae Dichelostemma capitatu@enth.) Wood bluedicks
Liliaceae Dichelostemma ida-mai@Vood) Greene firecracker flower
Liliaceae Disporum hookerirorr. Hooker's fairy bells
Liliaceae Lilium kelloggii Purdy Kellog's Lily
Liliaceae Lilium sp.L. lily

Liliaceae Scoliopus bigelovitorr. fetid adder's tongue
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Appendix A. Vascular plant species found in stiabation. Nomenclature follows the
USDA PLANTS Database (USDA, 2007; continued).

Family Species Common name
Liliaceae Maianthemum racemossuin) Link false lily of the valley
Liliaceae Maianthemum stellaturfi..) Link starry false lily of the valley
Liliaceae Trillium ovatumPursh coast trillium
Linaceae Linum bienneP. Mill. pale flax
Oleaceae Fraxinus latifoliaBenth. Oregon ash
Onagraceae Circaea alpinaL. enchanter's nightshade
Onagraceae Epilobiumsp. L. fireweed
Orchidaceae Corallorrhiza striataLindl. striped coral root
Oxalidaceae Oxalis oregana\utt. redwood sorrel
Papaveraceae Dicentra formosgHaw.) Walp. Pacific bleeding heart
Philadelphus lewisiPursh sspcalifornicus(Benth.)
Philadelphaceae | Munz wild mock orange
Pinaceae Abies grandigDougl. ex D. Don) Lindl. grand fir
Pinaceae Pinus ponderos®.& C. Lawson ponderosa pine
Pinaceae Pinus radiataD. Don Monterey pine
Pinaceae Pinus sylvestris.. Scot's pine
Pinaceae Pseudotsuga menziegWirbel) Franco Douglas-fir
Pinaceae Tsuga heterophyllgRaf.) Sarg. western hemlock
Plantaginaceae | Plantago lanceolata. narrow-leaved plantain
Poaceae Agrostis stoloniferd.. creeping bentgrass
Poaceae Anthoxanthum odoratuin sweet vernal grass
Poaceae Avenasp. L. oats
Poaceae Briza minorL. little rattlesnake grass
Poaceae Bromus hordeaceus soft brome
Poaceae Cortaderia jubata(Lem.) Stapf pampas grass
Poaceae Cynosurus echinatus bristly dogtail grass
Poaceae Dactylis glomeratd.. orchard grass
Poaceae Deschampsia cespitogh.) Beauv. tufted hair-grass
Poaceae Elymus glaucu8uckl. blue wildrye
Poaceae Hierochloe occidentali8uckl. California sweetgrass
Poaceae Holcus lanatud.. velvet grass
Poaceae Hordeum spL. barley
Leymus xvancouverengigasey) Pilger (pro sp.)
Poaceae [mollis x triticoides] wildrye
Poaceae Lolium perennd.. English ryegrass
Poaceae Phalaris spL. canarygrass
Poaceae Phleum pratense. common timothy
Polemoniaceae | Navarretia squarrosgEschsch.) Hook & Arn. skunkweed
Polygonaceae Rumex acetosella. common sheep sorrel
Polygonaceae Rumex crispuk. yellow dock
Polypodeaceae | Adiantum pedaturh. northern maidenhair fern
Portulaceae Claytonia perfoliataDonn ex Willd. miner's lettuce
Portulaceae Claytonia sibirical. Siberian candyflower
Primulaceae Trientalis borealisRaf. ssplatifolia (Hook.) Hultén broadleaf starflower
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Appendix A. Vascular plant species found in stiahation. Nomenclature follows the
USDA PLANTS Database (USDA, 2007; continued).

Family Species Common name
Pentagramma triangulariéKaulfuss) Yatskievych,
Pteridaceae Windham & Wollenweber goldenback fern
Pyrolaceae Pyrola pictaSm. white-veined wintergreen,
Ranunculaceae | Ranunculus californicus buttercup
Rhamnaceae Ceanothus thyrsifloruEschsch. blue blossom
Rhamnaceae Rhamnus californic&schsch. coffeeberry
Rhamnaceae Rhamnus purshian@C.) Cooper cascara buckthorn
Rosaceae Fragaria vescd.. woodland strawberry
Rosaceae Heteromeles arbutifoligLindl.) M. Roemer toyon
Rosaceae Holodiscus discolo(Pursh) Maxim. oceanspray
Rosaceae Oemleria cerasiformigHook & Arn.) J.W. Landon 0s0 berry
Rosaceae Prunus emarginatgHook.) Walp. bitter cherry
Rosaceae Rosa californicaCham. & Schidl. California rose
Rosaceae Rosa gymnocarpBlutt. wood rose
Rosaceae Rubus discoloFocke himalayan blackberry
Rosaceae Rubus parviflorus\utt. thimbleberry
Rosaceae Rubus spectabiliBursh salmonberry
Rosaceae Rubus ursinu€ham. & Schlecht. California blackberry
Rubiaceae Galium aparinel. common bedstraw
Salicaceae Salix hookerian®arratt ex Hook. dune willow
Salicaceae Salix scouleriand@arratt ex Hook. Scouler's willow
Salicaceae Salix sitchensiSanson ex Bong. Sitka willow
Salicaceae Salix spL. willow
Saxifragaceae Tolmiea menzies{Pursh) Torr. & Gray pig-a-back plant
Scrophulariaceae| Scrophularia californicaCham. & Schlecht. California bee-plant
Scrophulariaceae| Veronica american®chwein. ex Benth. water speedwell
Urticaceae Urtica dioical. stinging nettle
Violeaceae Viola sp.L. violet




Appendix B. Transformed divergence values for vagah classes by image type.
Vegetation codes are defined in Table 5.

Class A-Uc-Ld Pm Pm-Uc Pm-Ag Ld -UcPm IPG P
(1) Spectral separation for the aerial photo (@il 8l-band)

A-Uc-Ld 0

Pm 133 0

Pm-Uc 120 83 0

Pm-Ag 134 23 33 0

Ld-Uc-Pm 149 136 102 97 0

IPG 1261 1029 991 999 698 0

P 227 176 350 258 288 1112 0

(2) Spectral separation for the Quickbird imag&10m, 4-band)

A-Uc-Ld 0

Pm 224 0

Pm-Uc 59 112 0

Pm-Ag 160 27 69 0

Ld-Uc-Pm 177 99 71 113 0

IPG 1606 1345 1483 1530 1196 0

P 934 395 740 493 632 1419 0

(3) Spectral separation for the NAIP image (1.®Brband)

A-Uc-Ld 0

Pm 119 0

Pm-Uc 40 56 0

Pm-Ag 122 23 31 0

Ld-Uc-Pm 224 198 297 299 0

IPG 489 548 650 695 137 0

P 644 310 589 452 386 741 0
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