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ABSTRACT 

 
A Comparison of High Spatial Resolution Images for Fine Scale Vegetation Mapping  

 
Christine A. West 

 
 

 Recent advances in airborne and spaceborne sensors have made high spatial 

(≤1m/pixel) and spectral resolution images (e.g. IKONOS, SPOT 5, Quickbird 2) widely 

available, raising questions regarding their utility for floristic identification and 

classification.  Additionally, the use of object-oriented software to perform automated 

classification and mapping has increased throughout the past 20 years.  Studies assessing 

the utility of these image and software options frequently center on large, homogeneous 

sites and do not address these applications to small, heterogenous areas typical of the 

Pacific Northwest.  In this study, a high-density sampling grid was used (approximately 

9.0 % sample), followed by agglomerative cluster analysis and ordination, to identify all 

vegetation alliances and associations on a 148-ha study site in Maple Creek, California.  

Supervised classification using object-oriented software was performed on three images 

of various high spatial resolutions (0.15 m 4-band aerial photo, 0.60 m 4-band satellite 

image, and 1 m 3-band satellite image).  The resulting classifications were compared with 

the reference vegetation map (derived from plot and image data) to assess accuracy.  

Results show differences in classification accuracy between the 3 images with the 0.60m 

Quickbird image producing the highest overall accuracy (69%); followed by the 0.15m 

aerial photo (48%); and the 1m NAIP image (37%) when assessed at the alliance level.   
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1. Introduction 

 
The use of remote sensing technology in vegetation classification and mapping 

has increased over the past 30 years (Environmental Systems Research Institute and The 

Nature Conservancy, 1994; Jensen, 2000; Greenberg et al., 2006).  Remote classification 

reduces the need for field sampling and alleviates access constraints, making this 

technology a valuable tool for resource managers (Mullerova, 2004; Leckie et al., 2005; 

Johansen et al., 2007).  Historically, remotely-based vegetation classification was 

performed via manual polygon mapping with air photos (Anderson et al., 1976; Hall, 

2003; Sandmann and Lertzman, 2003) as these images offered distinctly higher spatial 

resolution or smaller pixel sizes (Benson and MacKenzie, 1995; Lillesand et al., 2004) 

than satellite imagery.  Recent advances in spaceborne sensors, however, have made high 

spatial and spectral resolution satellite images (e.g. IKONOS, SPOT 5, Quickbird 2) 

widely available, raising questions regarding their utility for floristic identification and 

classification (Carleer and Wolff, 2004; Johansen et al., 2007).  Additionally, vegetation 

mapping methods have expanded with the development of automated classification 

procedures which provide image enhancement and processing techniques not available 

with manual mapping practices (Lillesand et al., 2004).   

Higher spectral resolution, or larger number of bands in a given sensor (Lefsky 

and Cohen, 2003), provides opportunities for discerning vegetation characteristics 

unobservable in natural color (Lefsky and Cohen, 2003; Lillesand et al., 2004).  The very 

near infrared band, in particular, allows for the development of vegetation indices such as 



2 

  

a normalized difference (NDVI) to assist in live canopy detection (Asner et al., 2003).  

Higher band numbers, however, may increase scene ‘noise’ and image variance 

(Lillesand et al., 2004).   

 Although higher spatial resolution imagery ( ≤1 m) allows for clearer 

visualization of ground features (Lefsky and Cohen, 2003; Wulder et al., 2004) an 

increase in pixel number raises the internal variability within homogeneous land cover 

units, causing difficulties in class discernment (Carleer and Wolff, 2004).  Intra-class 

variability issues are particularly problematic for per-pixel classifiers which rely solely 

on spectral signature values (Cushnie, 1987; Woodcock and Strahler, 1987; Lefsky and 

Cohen, 2003).  Per-pixel software limitations, such as ‘salt and pepper’ effects where 

individual pixels are classified differently from their neighbors (Yu et al., 2006), have led 

many interpreters to believe these classifiers are not ideal for large heterogeneous units 

such as vegetation classes (Song et al., 2005; Yu et al., 2006).  Exploration into spectral 

mixture analysis (Foody and Mathur, 2006) and object-oriented software, however, have 

shown promise in tolerating certain levels of variability (Yu et al., 2006) previously 

found to be problematic for per-pixel classifiers.    

 Consequently, object-oriented approaches have become popular for vegetation 

classification particularly when using higher-resolution images (Hay et al., 2005; Chubey 

et al., 2006).  Object-based classifiers use aggregated groups of pixels, or image objects, 

to train the program to identify discrete entities normally recognizable to the human eye 

(Hay et al., 2005).  In general, these programs group spatially adjacent pixels into 

spectrally homogeneous objects to then be used as minimum classification units  
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(Yu et al., 2006).  Feature Analyst 4.1 (Visual Learning Systems, 2006) is a popular 

object-oriented commercial software package in use today that utilizes an artificial neural 

network classifier (Ripley, 1996) to consider spatial attributes, such as spatial association 

and image texture, when performing automated feature extraction (Vanderzanden and 

Morrison, 2003).  Object-oriented classifications do not, however, always reach the 

commonly recommended 80 - 85% accuracy standard (Environmental Systems Research 

Institute and The Nature Conservancy, 1994; Congalton and Green, 1999; Foody, 2002; 

USDA, 2002) especially when analyzing fine scale, floristically-based categories (e.g. 

alliance or association).  Thus, automated software users often broaden their class scales 

to reach this accuracy standard, resulting in coarser, homogeneous units that may not 

adequately reflect the heterogeneity typical of many second-growth forests (Spies et al., 

1994; Jiang et al., 2004). 

 Furthermore, because access and sampling issues are magnified in larger areas, 

studies assessing the utility of remotely-driven classification frequently center on 

extensive sites such as entire national forests or parks (Jiang et al., 2004; Greenberg et al., 

2006; Yu et al., 2006), or large private holdings (Spies et al., 1994).  Limited ground 

sampling in these large areas for training and validation purposes (Environmental 

Systems Research Institute and The Nature Conservancy, 1994; Jiang et al., 2004; Leckie 

et al., 2005) generally results in low-confidence reference data (Foody, 2002).  In this 

study, however, the small scale of the site afforded a unique opportunity for 

comprehensive ground coverage and generation of high-confidence reference 

information.   
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 In addition to image resolution and classification method considerations, image 

type (air photo vs. satellite) may play a role in accuracy (Lefsky and Cohen, 2003).  

Satellite images avoid many of the problems associated with aerial photography such as 

join lines in mosaicked scenes, non-standardized flight orientations, or difficulty in 

acquiring multidate data sets (Lefsky and Cohen, 2003; Chubey et al., 2006).  Spaceborne 

platforms can be limited, nonetheless, by inflexibility of satellite orbit schedules, as well 

as increased atmospheric effects due to greater sensor-to-ground distance (Lefsky and 

Cohen, 2003).  Perhaps one of the chief issues regarding image type is the associated cost 

incurred with each of these options.  When dealing with a small site, the price per acre of 

imagery may be increased as there are frequently minimum area requirements for scene 

purchases.  Acquiring timely aerial photographs can also be prohibitively expensive due 

to the cost of chartering flights.  Commercial satellite imagery ranges in price from $1 – 

22/km2 (Yildirim and Seker, 2004) however government subsidized programs such as 

Landsat and NAIP (National Agricultural Imagery Program) offer free imagery.   

 There are numerous decisions land managers need to make when selecting 

appropriate methods for classifying vegetation such as: type of image (air photo vs. 

satellite), image resolution (spatial and spectral), and mapping method (automated vs. 

manual).  These decisions need to be made in the context of the manager’s objectives 

(e.g. habitat mapping vs. timber inventory).   Research assessing these image and 

software options will provide land managers with information regarding the utility of 

using high-resolution imagery coupled with object-oriented classification software when 

attempting to classify vegetation.  The specific objectives of this study were to (1) 
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classify and map vegetation on a small, heterogeneous forested landscape, (2) compare 

the accuracy of a visual and field-based classification method with an object oriented 

classification method (Feature Analyst), and (3) compare the accuracy of classifying 

vegetation using three high spatial resolution (0.15, 0.60, and 1.0 m) digital images.
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2. Materials and methods 

 
2.1. Study area 

 
 This study was conducted on the L.W. Schatz Demonstration Tree Farm located 

in Maple Creek, California (Fig. 1).  The 148-hectare site extends from 40°46’49’’ N to 

40°45’56’’ N latitude and 123°52’21’’ W to 123°51’32’’ W longitude (T 5N, R 3E, 

Section 32).  It ranges in elevation from 140 to 430 m, and is underlain by the Franciscan 

Formation, a subduction complex consisting of accreted fragments of oceanic crust and 

forearc sediments (Aalto and Harper, 1989). 

 Originally consisting of old-growth Pseudotsuga menziesii forest, the land was 

logged in the early 1950’s (Schatz 2007, personal communication).  It has since 

experienced a mixture of natural recovery and management resulting in a heterogeneous 

landscape mosaic typical of many northwestern forests today (Halpern and Spies, 1995). 

 Current vegetation includes more than 150 species (Appendix A) and is 

dominated by a P.  menziesii and mixed hardwood overstory with an understory of 

abundant evergreen shrubs and ferns.  In addition to the forested areas, the study site 

contains upland prairie and a transmission right-of-way where both native and non-native 

perennial grasses dominate. 
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Figure 1. Location and extent of study area (outlined in black) consisting of most of the W ½ of Section 32 (T 5N, R3E), 17 
miles east of Eureka, California.
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2.2. Field sampling of vegetation 

 
 A high-density sampling grid scheme of 2 plots per hectare was chosen to achieve 

sufficient and balanced coverage of vegetation types (Cooper et al., 2006).  A circular 

plot shape was employed for all non-riparian plots.  Rectangular plots were used in 

riparian corridors to characterize floral composition accurately (California Native Plant 

Society, 2004).  The maximum number of plots based on 2/ha was 296.  However, the 

number sampled was 274 after eliminating plots overlapping the property boundary and 

those occurring on landslides and overly steep terrain. Two hundred and forty-eight plots 

were on upland, tree-dominated terrain (0.05 ha, 12.6 m radius); 8 plots were in riparian 

zones (0.05 ha, various dimensions); and 18 plots were in shrub- or herb-dominated areas 

(0.02 ha, 8.0 m radius).  The plots covered approximately 9% of the tree farm. 

 Field data were collected from June-August, 2006 using a modified rapid 

assessment protocol (California Native Plant Society, 2004).  Vegetation was sampled 

using relevé plots and modified Braun-Blanquet cover abundance scaling (Table 1; 

Braun-Blanquet, 1932; Lee, 2004).  Ocular estimates of plant cover by species (within 

plot or outside of plot but providing cover within the plot) were recorded for all strata, as 

were average height (m) and total percentage cover by stratum (Mueller-Dombois and 

Ellenberg, 1974).  Abiotic information recorded included: elevation (m), topographic 

position/landform, percent slope, aspect, and soil type (Colwell, et al., 1960).   
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 Table 1.  Cover abundance scale used in ocular estimates (Lee, 2004).  

Cover Class Cover Range (%) 

1 0.001 – 0.01 
2 0.01 – 0.1 
3 0.1 – 1 

4 1 – 5 
5 5 - 15 

6 15 – 25 
7 25 – 50 
8 50 – 75 

9 75 - 100 
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2.3. Classification and Ordination 

 

 Vegetation data were analyzed using several multivariate approaches.  Species 

with less than 1% total cover on the site were removed a priori to prevent outlier effects 

(McCune and Grace, 2002).  Riparian plots were included in the overall analysis due to 

similarities in dominant vegetation with non-riparian units.  Data were grouped into 

possible plant associations using a hierarchical clustering algorithm (Euclidean distance, 

Ward’s linkage method) contained in PC_ORD (McCune and Grace, 2002).  This method 

merges individual plots into groups based on species similarity.  Resultant groups were 

then pared down through indicator analysis.  Data were further analyzed via comparisons 

of species abundance and constancy within and between groups.  A Nonmetric 

Multidimensional Scaling ordination was performed to further reduce the data set and 

graphically depict ecological relationships among plots. 

 The naming convention in A Manual of California Vegetation (Sawyer and 

Keeler-Wolf, 1995) was used when assigning plots to alliance and associations.    

Dominant species were defined as those having ≥ 50% relative cover and frequency 

across all plots within a vegetation type.   

 
2.4. Image Acquisition and Processing 

 
 Three images were acquired for analysis (Fig. 2).  One multispectral, 4-band (0.45 

– 0.90 µm) airborne image with 0.15 m spatial resolution was acquired on June 22, 2006 

for use in reference map creation and automated feature extraction.  A multispectral,
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Aerial image (0.15 m) NAIP image (1.00 m)Quickbird image (0.60 m)

0 10.5 M ile s

Aerial image (0.15 m) NAIP image (1.00 m)Quickbird image (0.60 m)

0 10.5 M ile s
 

Figure 2. Digital images (and associated pixel resolution) used in analysis.  Aerial image acquired on June 22, 2006, 
Quickbird image acquired July 28, 2006, NAIP image acquired June 15, 2005. The outline of the study site appears in 
red.
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4-band (0.45 – 0.90 µm) QuickBird satellite image of 0.6m spatial resolution acquired 

July 28, 2006 by Digital Globe, and a natural color 3-band (0.45 – 0.69 µm) NAIP 1 m 

spatial resolution aerial image acquired June 15, 2005 by U.S. Department of Agriculture 

Farm Services Agency were used in automated feature extraction only.  

 The QuickBird image was orthorectified in ArcMap using a 10 m digital elevation 

model and rational polynomial coefficients (Barbarella et al., 2004).  All other images 

were georeferenced and orthorectified by the provider.  Image radiances were not 

atmospherically corrected (Lillesand et al., 2004) as times series analysis of consecutive 

image data was not required for this study and detailed information on the atmospheric 

conditions at the time of overpass was not available.  

 
2.5. Vegetation Mapping 

 
 Vegetation polygons were visually interpreted and digitized in ArcMap using the 

0.15 m resolution aerial image and labeled to alliance and association. The minimum 

mapping unit (MMU) was 1000 m2 (approximately 2 tree-dominated ground plots) and 

was chosen in order to retain detail while capturing stand-level characteristics (Stohlgren 

et al., 1997). Vegetation polygons were laid over the remaining two images and adjusted 

to account for shifts in images due to error, orthorectification or georeferencing 

limitations.  Polygons not containing at least one ground plot were verified in the field. 

 
2.6. Automated Feature Extraction 

 
 Supervised classification of imagery was performed via automated feature 

extraction using Feature Analyst (Visual Learning Systems 2006) software. Training 
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polygons were randomly selected from the reference map using Spatial Analyst in 

ArcGIS 9.1 to a standard of 5 or fewer polygons (approximately 40%) per vegetation 

type.  All vegetation classes were included in association-based classification.  

Vegetation classes covering < 1% of the study area or those with only one polygon were 

masked in the alliance-based classification.  Selected input parameters included pre-

aggregation to 500 pixels and a representation pattern appropriate for stand-level classes 

(Fig. 3; Vanderzanden and Morrison, 2003).  All vegetation data were used in map 

validation. 

 One classification using all available spectral bands was executed with the 

association reference map.  Several classifications were executed with the alliance 

reference map.  Band selection methods for alliance map analyses included: use of all 

available spectral bands, removal of the VNIR band in the Quickbird and aerial images, 

application of an NDVI to the Quickbird and aerial images, and application of only the 

spectral bands exhibiting the best average separability as determined by a transformed 

divergence statistic (Swain and Davis, 1978; ERDAS IMAGINE, 2005).  Overall, the 

greater the transformed divergence, the greater the statistical distance between training 

classes and the higher the probability of correct classification (Lillesand et al., 2004).  In 

general, if a result is greater than 1,900 then the classes can be separated; between 1,700 

and 1,900 the separation is fairly good.  Below 1,700 the separation is poor (Jensen, 

2000).  
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Figure 3. Feature Analyst input pattern representation. Pixels shown in blue represent those included in analysis. 
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To keep spatial resolution constant and test for an effect from the infrared band, the 

Quickbird and aerial images were resampled to 1m, and all images were run with all 

available spectral bands. 

 
2.7. Accuracy Assessment 

 
 Correct vs. incorrectly classified polygons were identified in the output maps 

using zonal statistics in Spatial Analyst (Environmental Systems Research Institute, 

2006).  If the majority of pixels in the output polygon matched the reference polygon then 

the entire polygon was identified as correct.  A majority assessment rule was chosen to 

account for the inherent heterogeneity within vegetation classes (Sawyer and Keeler-

Wolf, 1995) and because more traditional (per-pixel) assessments of classification 

accuracy are often inappropriate for use in these systems (Yu et al., 2006). 

 Map accuracies are presented in the form of an ‘error matrix’ which includes 

measures of producer’s, user’s, and overall accuracy (Story and Congalton, 1986; Foody, 

2002).  Producer’s accuracy, or error of omission, indicates the probability of a reference 

sample being correctly classified by the software.  User’s accuracy, or error of 

commission, indicates the probability that a pixel classified on the map represents that 

category on the ground (Congalton and Green, 1999).  Kappa coefficients, Khat, were 

calculated for overall map accuracy to compensate for random chance agreement 

(Rosenfield and Fitzpatrick-Lins, 1986).
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3. Results 

 
Twenty-five vegetation associations (Table 2; Fig. 4) and 13 vegetation alliances 

were classified (Table 3; Fig. 5) and mapped.  Sequoia sempervirens plantations were 

included as classes in the association map as they were subcanopy dominant.  Pinus sp. 

plantations were included as classes in the alliances as they were canopy dominant.  The 

study site is primarily dominated by P. menziesii - Abies grandis, Alnus rubra, and P.  

menziesii - Lithocarpus densiflorus classes.  Species richness per alliance varied from a 

low of four in a Baccharis pilularis alliance to a high of 21 in a Fraxinus latifolia riparian 

alliance (Table 3).   

 The output association maps (Fig. 6) had very low overall accuracies across all 

images.  The Quickbird output had the highest overall accuracy (14%), followed by the 

NAIP (11%), and the air photo (3%).  When using only 3 bands per image (R, G, B) the 

Quickbird output accuracy decreased to 3% while the air photo output accuracy increased 

to 7%. 

Output maps of alliances (Fig. 7) had much higher overall accuracies across 

image types (Table 4) than association output maps.  The Quickbird output was most 

accurate (69%, Khat = 0.43), followed by air photo (48%, Khat = 0.33), and lastly NAIP 

(37%, Khat = 0.28) when all available bands were included in the analysis (Table 4, 

column a). The air photo and Quickbird alliance maps decreased in overall accuracy after 

removal of the infrared spectral band (Table 4, column b).  Analyses using bands with the 

highest spectral separation had mixed results.  The Quickbird and air photo accuracies 

decreased while the NAIP accuracy increased by 4% (Table 4, column c).  
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Table 2. Relative cover, frequency, and species richness of associations.  

Associations Relative 
cover (%) 

Number 
of 

polygons 

Mean species 
richness  

Standard 
deviation of 

species richness  

Umbellularia californica - Alnus rubra 12.6 16 16 5 
Lithocarpus densiflorus 12.1 19 13 4 
Umbellularia californica - Pseudotsuga menziesii 10.3 21 20 4 
Pseudotsuga menziesii - Abies grandis 8.4 11 22 5 
Lithocarpus densiflorus - Alnus rubra - Umbellularia californica 7.7 7 15 5 
Pseudotsuga menzieseii/Rubus ursinus 6.9 11 19 7 
Pseudotsuga menziesii/Polystichum  munitum 6.5 9 20 3 
Abies grandis - Pseudotsuga menziesii 6.3 15 20 4 
Pseudotsuga menziesii - Lithocarpus densiflorus 6.1 12 21 6 
Lithocarpus densiflorus - Umbellularia californica - Pseudotsuga 

menziesii 3.9 10 14 4 
Alnus rubra 3.7 11 18 4 
Transmission right-of-way 2.5 3 13 3 
Tsuga heterophylla 2.1 1 9 3 
Pseudotsuga menzieseii/Ceanothus thyrsiflorus 2.1 4 14 1 
Lithocarpus densiflorus - Sequoia sempervirens 2.0 4 15 5 
Pinus ponderosa 1.2 2 21 0 
Introduced perennial grasslands 1.2 3 14 1 
Pseudotsuga menziesii - Sequoia sempervirens 0.9 2 21 7 
Acer macrophyllum 0.9 5 23 6 
Fraxinus latifolia 0.7 5 21 2 
Salix sp. 0.7 4 22 11 
Ceanothus thyrsiflorus 0.6 3 18 2 
Pinus radiata 0.3 1 24 0 
Baccharis pilularis 0.1 2 4 0 
Quercus garryana 0.1 1 17 0 
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Figure 4.  Thematic map showing 25 vegetative associations on study site.  Areas in black were masked as non-

vegetation during analysis. 
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Table 3. Relative cover, frequency, and species richness of alliances (*indicates vegetation classes used in automated feature 

extraction). 
Alliances Relative 

cover (%) 
Number of 
polygons 

Mean species 
richness  

Standard 
deviation of 

species 
richness 

Pseudotsuga menziesii - Abies grandis* 28.1 26 21 4 
Alnus rubra - Umbellularia californica - Lithocarpus densiflorus* 24.7 19 16 4 
Lithocarpus densiflorus - Umbellularia californica - Pseudotsuga menziesii* 19.7 16 14 5 
Pseudotsuga menziesii - Umbellularia californica* 13.0 19 20 4 
Pseudotsuga menziesii* 6.9 14 19 6 
Introduced perennial grassland* 3.6 6 13 2 
Pine plantation* 1.0 2 21 4 
Fraxinus latifolia 0.8 5 21 2 
Acer macrophyllum 0.7 6 23 6 
Salix sp.  0.7 4 22 11 
Ceanothus thyrsiflorus 0.6 3 18 2 
Baccharis pilularis 0.1 2 4 0 
Quercus garryana 0.1 1 17 0 
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Figure 5.  Thematic map showing seven vegetative alliances used in classification.  Areas in black were masked as non-

vegetation during analysis.  
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Figure 6.  Feature analyst output association maps by image type.  Areas in black were masked as  

non-vegetation during analysis.
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Figure 7.  Feature analyst output alliance maps by image type.  7 vegetative alliances used in  

classification are shown.  Areas in black were masked as non-vegetation during analysis.  
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Table 4. Overall alliance output map accuracies by image type and analysis. Band numbers used in analysis in parentheses. 

 

Image Spatial 
Resolution 

All available bands 
a. 

VNIR removed 
(3-band) 

b. 
Select bands 

c. 
NDVI 

d. 

NAIP (1.00m) 0.37 (1,2,3) n/a 0.41 (2,3) n/a 

Quickbird (0.60m) 0.69 (1,2,3,4) 0.60 (1,2,3) 0.47 (2,3) 0.54 (1,2,3,4,5) 

Air photo (0.15 m) 0.48 (1,2,3,4) 0.27 (1,2,3) 0.33 (1,3,4) 0.37 (1,2,3,4,5) 
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The addition of the commonly used NDVI also did not improve overall accuracy (Table 

4, column d).  Overall accuracies decreased for the Quickbird and aerial images when 

resampled to 1m, implying a positive influence on accuracy from the VNIR band (Fig. 8). 

The highest overall accuracies for the Quickbird and aerial output maps were produced 

through the inclusion of all 4 bands and no further manipulation.  The highest overall 

accuracy for the NAIP output map (41%) was produced through the removal of band 1.  

The error matrices for each image (Table 5) reveal that the pine plantation and 

introduced perennial grassland classes generally had the highest user and producer 

accuracies.  The pine plantations were misclassified, however, as A. rubra in the aerial 

output map.  There was little consistency with other class accuracies or relative cover 

values (Table 6) across image types.  The A. rubra dominant class had high user and 

producer accuracies but was confused with the P. menziesii – Umbellularia californica.  

The P. menziesii – U. californica and P. menziesii – L. densiflorus classes performed 

differently across images, however the P. menziesii – L. densiflorus class had relatively 

high user accuracies suggesting that, when identified, these classes were labeled 

appropriately.  The P. menziesii class had the lowest producer accuracies (5-36%) and 

was frequently confused with the mixed P. menziesii – A. grandis class.  
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Figure 8. Overall accuracies of original and images resampled to 1 m. Number of spectral 

bands in parentheses. 
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Table 5. Error matrices for alliance map classification results by image type.  Values 
represent area (m2) classified. Vegetation classes for the L.W. Schatz study site 
include: (1) Alnus rubra - Umbellularia californica - Lithocarpus densiflorus (A-
Uc-Ld); (2) Pseudotsuga menziesii (Pm); (3) Pseudotsuga menziesii - 
Umbellularia californica (P -Uc); (4) Pseudotsuga menziesii - Abies grandis (Pm-
Ag); (5) Lithocarpus densiflorus - Umbellularia californica - Pseudotsuga 
menziesii (Ld-Uc-Pm); (6) Introduced perennial grasslands (IPG); and (7) Pine 
plantation (P). 

 
Classified data   Reference data 

Class  A-Uc-Ld Pm Pm-Uc Pm-Ag Ld -UcPm IPG P 
User 
(%) 

(1) Classification error matrix for the aerial photo (0.15 m, 4-band)  

A-Uc-Ld 
 

294645 21856 66020 49650 182548 0 
1112

6 47 
Pm  0 4511 0 30454 0 0 0 13 
Pm-Uc  6606 12884 74008 145180 0 0 0 31 
Pm-Ag  43939 59141 37805 192590 52480 0 3750 49 
Ld-Uc-Pm  0 0 0 2 43069 0 0 100 
IPG  0 0 0 0 0 54014 0 100 
P  0 0 0 0 0 0 0 0 
Producer (%)  85 5 42 46 15 100 0  
Overall (%)         48 
Khat         0.33 
          
(2) Classification error matrix for the Quickbird image (0.60 m, 4-band) 
A-Uc-Ld  248618 0 47270 2 0 0 0 82 
Pm  0 5707 0 0 0 0 0 100 
Pm-Uc  0 0 12261 14645 0 0 0 46 
Pm-Ag  68084 29170 68856 348958 0 595 0 69 
Ld-Uc-Pm  28489 61969 49446 54271 278098 0 0 59 
IPG  0 0 0 0 0 53419 0 100 

P 
 

0 1545 0 0 0 0 
1487

6 90 
Producer (%)  70 6 7 85 100 99 100  
Overall (%)         69 
Khat         0.43 
          
(3) Classification error matrix for the NAIP image (1.0 m, 3-band) 
A-Uc-Ld  68111 3821 0 0 0 0 0 95 
Pm  658 35886 3777 48625 15961 0 0 34 
Pm-Uc  275181 50215 174056 369251 40984 0 0 19 
Pm-Ag  0 0 0 0 0 0 0  
Ld-Uc-Pm  0 6927 0 0 173858 982 0 96 
IPG  1240 0 0 0 47295 52429 0 52 

P 
 

0 1544 0 0 0 603 
1487

6 87 
Producer (%)  20 36 98 0 63 97 100  
Overall (%)         37 
Khat         0.28 
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   Table 6. Relative cover values of alliances for Feature Analyst output maps by image type. 

 

 
Alliance 

Aerial 
image 

Quickbird 
image 

NAIP image Reference map 

 

Pseudotsuga menziesii - Abies grandis  
 

24.0 
 

33.1 
 

0.3 
 

28.1 
 

Alnus rubra - Umbellularia californica - 

Lithocarpus densiflorus 

 
30.4 

 
17.1 

 
9.0 

 
23.7 

 

Lithocarpus densiflorus - Umbellularia 

californica - Pseudotsuga menziesii 

 
6.9 

 
31.0 

 
11.8 

 
18.7 

Pseudotsuga menziesii - Umbellularia 

californica 
 

20.8 
 

9.4 
 

50.8 
 

12 
 

Pseudotsuga menziesii 
 

14.5 
 

1.8 
 

16.9 
 

6.6 
 
Introduced perennial grassland 

 
3.3 

 
4.3 

 
8.1 

 
3.6 

 
Pine plantation 

 
0.2 

 
3.3 

 
3.2 

 
1 
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When the P. menziesii and P. menziesii – A. grandis classes were combined into a “mixed 

conifer” class the overall accuracies of the air photo, Quickbird, and NAIP images 

increased to 54%, 72%, 41%, respectively.    

Differences in vegetation class accuracies were evaluated using a non-parametric 

Kruskal-Wallis ANOVA procedure, followed by Kruskal-Wallis Z and Bonferroni 

correction.  Significant differences (p <0.05) between the accuracies of vegetation types 

for each image were detected (Figure 9).   

 
3.1. Sources of Error  

 
 Spectral separation of classes was calculated for all three images using the 

transformed divergence statistic (Swain and Davis, 1978; ERDAS IMAGINE, 2005).  

Results showed that all images did not have ideal spectral separation implying spectral 

overlap between classes.  The Quickbird data had the best statistical separation between 

categories.  All images had similar minimum values.  In general, the classes with the 

highest producer and user accuracies had the highest spectral separation (Appendix B).  

The introduced perennial grass class was the most spectrally distinct with the highest 

transform divergence values across all images (air photo = 995, Quickbird = 1432, NAIP 

= 503 average TD).  Classes that were confused with each other typically had 

transformed divergence values <100 but were not always those with the highest spectral 

overlap.  For example, in the aerial image the pine plantation class was confused with the 

Alnus rubra - Umbellularia californica - Lithocarpus densiflorus class (TD = 227) and 

not the Pseudotsuga menziesii class (TD = 17). 
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Figure 9.  ANOVA test for differences in vegetation class accuracy across image types.  

Different letters above the bars indicate significant differences in Tukey post-hoc 
comparisons between the classes.  Vegetation codes are defined in Table 5.
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 Increasing internal variability in vegetation classes is correlated with decreasing 

classification accuracy (Cushnie, 1987; Cochrane, 2000).  Higher intra-class variability 

lessens the separation between classes, making thematic distinction difficult. The average 

standard deviations of the digital numbers within vegetation types revealed differences 

across images.  The air photo has the most intra-class variability (31.1) which may be due 

to the high number of pixels.  It did not, however, have the lowest accuracies when all 4 

bands were used, implying an important contribution from the VNIR band.  The 

Quickbird image had the least amount of intra-class variance (11.2) and the highest 

accuracies.   

Although factors such as polygon size, total vegetation coverage, and number of 

training polygons have been shown to influence accuracy (Foody et al., 1995; Foody and 

Arora, 1997; Staufer and Fischer, 1997; Ellis and Wang, 2006; Foody and Mathur, 2006), 

logistic and linear regressions of these variables did not result in significant findings with 

the exception of the NAIP image where producer accuracy increased as class coverage 

decreased (p = 0.03).  This relationship is exemplified in the pine plantation high 

accuracies despite low cover (1%) and low number of training polygons (2). 
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4. Discussion 

 

 
 In all cases, the Quickbird image produced the highest levels of overall accuracy 

when compared to the air photo and the NAIP image.  Image processing techniques, such 

as resampling, inclusion of an NDVI, selection of bands with the highest transformed 

divergence values, or use of natural color bands (R, G, B) alone, did not alter this 

outcome.  These techniques did, however, generally lower the overall and class 

accuracies of the Quickbird and air photo.  The highest overall accuracies for these two 

images were produced using all available bands.  The highest accuracy for the NAIP 

image, however, resulted from the removal of the blue band (450 – 520 nm).  Blue bands 

can add unwanted noise to an image oftentimes due to atmospheric scattering (Kimes et 

al., 2006).  The NDVI did not produce higher accuracies since this index generally 

compensates for terrain effects such as surface slope, aspect, or elevation, (Lillesand et 

al., 2004) and these factors were not significantly different between vegetation types.  

Additionally, the addition of the NDVI may have also added unwanted noise through the 

inclusion of redundant reflectance values.  

What accounts for these differences in image performance?  Generally speaking it 

results from the software’s ability to discriminate between classes.  Spectral separation 

and internal variability of classes were predominant factors influencing class discernment 

(Cushnie, 1987; Cochrane, 2000). An increase in intra-class variability causes a reduction 

of statistical separability between classes (Cushnie, 1987; Yu et al., 2006). 
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 The Quickbird image had the highest overall transformed divergence values, the 

lowest intra-class variability, and the highest accuracies.  This pattern was also found 

with the pine plantation and introduced perennial grass vegetation types.  High accuracies 

occurred in these classes despite their low percentage of vegetative cover, as well as 

small number of training polygons (Foody, 2002; Chubey et al., 2006) suggesting that 

spectral separation supersedes these other variables in effect. 

 Another mechanism behind image performance relates to spatial resolution.  It 

can be difficult to assess the appropriate threshold for spatial resolution.  Too fine a 

resolution may increase the internal variability within homogeneous land cover units too 

much (Woodcock and Strahler, 1987; Aplin et al., 1997; Greenberg et al., 2006; Yu et al., 

2006).  At too coarse a resolution a number of vegetation types may be combined within 

one pixel, resulting in a spectrally noisy signal and yielding poor classification results 

(Cushnie, 1987; Yu et al., 2006; Johansen et al., 2007). The results of the 3-band input 

trials imply that a 0.6 m spatial scale may be best suited for alliance-level classification, 

followed by 1 m and finally 0.15 m.  The higher resolution aerial photo may aid in visual 

interpretation, but it is not a ‘best fit’ when using automated classifiers.   

 Accuracies less than 80% may be due to land management history and to the early 

seral stages in this landscape (Jiang et al., 2004; Lu, 2005; Rapp et al., 2005).  My study 

site was a heterogeneous mosaic of young forest, plantation, and remnant old-growth 

trees typical of post-logged coniferous forests in the Pacific Northwest today (Spies et al., 

1994; Jiang et al., 2004).  Due to fragmentation of the landscape and resultant growth 

patterns, vegetation classes were rarely composed of solely one or two dominant species, 
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such as a pine or grass, but were instead a mix of conifer and hardwood species of 

varying ages and sizes.  For example, some classes defined by the Federal Geographic 

Data Committee (1997) have differences of 10% tree cover in some of their alliances 

which would not consistently produce a significant change in spectral signal (Greenberg 

et al., 2006).  Dissimilarities in structural attributes of forest stands may have a greater 

effect on reflectance characteristics than tree species composition (Lefsky and Cohen, 

2003).  Additionally, evergreen forest types have been shown to lack unique spectral 

reflectance characteristics due to limited phenological differences (Lillesand et al., 2004).  

In my study the most ecologically mixed classes tended to be the most confused.  

Although some interpreters emphasize the importance of spectrally ‘pure’ classes, there 

may be more inherent variability within one tree crown than between species or classes 

(Leckie et al., 1992).  Thus, prioritizing class homogeneity may produce ecologically 

meaningless polygons.   

Categorical scale is another important factor in classification (Marceau et al., 

1994; Ju and Gopal, 2005; Rapp et al., 2005).  The map of associations had extremely 

low accuracies likely due to large number of input classes and the presence of subcanopy 

vegetation (Greenberg et al., 2006).  To date, LIDAR data has been most effective in 

directly measuring three-dimensional distributions of plant canopy and sub-canopy 

(Lefsky and Cohen, 2003) thus a laser-altimetry tool may be more suited for this level of 

detail.  Other studies (Greenberg et al., 2006; Yu et al., 2006) have generally shown low 

accuracies when attempting to classify alliances because of the influence of sub-canopy 

vegetation, small sample sizes, and species co-dominance.  
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Additional issues affecting accuracy not directly explored in my study include 

positional error of GPS and imagery (Foody, 2002), temporal differences in image 

acquisition (Lefsky and Cohen, 2003), join lines in mosaicked aerial photos (Lefsky and 

Cohen, 2003), as well as accuracy assessment method (Gopal and Woodcock, 1994; 

Stehman, 1997; Foody, 2002; Liu et al., 2007).  

Overall accuracies were somewhat low with fine scale classifications, and only one 

image approached the commonly used 80% accuracy threshold (Environmental Systems 

Research Institute and The Nature Conservancy, 1994).  The software produced the 

highest accuracies when utilizing all available bands, thus removing the need for image 

enhancement or other interpreter-based processing techniques (Hay et al., 2005).  

  The specific algorithms employed by Feature Analyst software included a type of 

neural network classifier that considers spatial context, or image ‘texture’, in addition to 

the brightness values of the pixels (Visual Learning Systems, 2006).  Neural network 

classifiers have been successful in supervised classification of community data owing in 

part to their non-parametric nature which is appropriate for non-normally distributed data 

(Černá and Chytrý, 2005), as well as their ability to learn by example and generalize 

(Foody and Arora, 1997).  Although artificial neural networks have given accurate class 

predictions compared to other supervised methods they are also accused of having a 

‘black-box’ approach (Černá and Chytrý, 2005) which hides the underlying process.  

Foody and Arora (1997) found that neural network classifiers performed well on small 

training sets, however this software could not resolve classes in the alliance map that 

were represented by only 1 polygon, regardless of size.  Therefore, types that are ‘rarer’ 
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such as Tsuga heterophylla, could not be identified through this process, and, it can be 

difficult to have enough polygons for training on such a small scale. 

Additionally, the input representation pattern employed was limited in pixel number 

(100 per band).  Therefore, less area was covered with each pass in the higher resolution 

images.  This resulted in certain features of distinct shape, such as the electrical right-of-

way, being misclassified in the association map.  Thus, processing time would be 

extended by the necessity of running several passes or employing different input patterns 

to extract various shapes.  
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5. Conclusions 

 
 Object-oriented software may not be the ideal method to achieve high accuracy 

for alliance-level classification and mapping.  Automated feature extraction has been 

shown to perform better in more homogeneous landscapes or at coarser categorical 

scales.  To date, remote sensing is not as accurate and precise in measuring vegetation 

that an investigator utilizing manual and field-based mapping techniques can achieve 

(Greenberg et al., 2006).  Thus, choosing this method of classification should be weighed 

against considerations such as cost and time limitations. 

 Spatial and spectral resolutions are important parameters to consider when 

choosing imagery for vegetation mapping.  It is wise to use imagery at a spatial resolution 

that is appropriate for both the features being classified (Woodcock and Strahler, 1987) 

and the method of classification.  In short, higher spatial resolution does not always 

produce the highest map accuracies with automated methods, and lower spatial resolution 

is not ideal for manual mapping.  Additionally, the processing time associated with each 

image type should be considered as larger file sizes may lead to cumbersome hardware 

demands. 

 More work is needed to explore the utility of very high spatial resolution imagery 

in the field of vegetation classification and mapping.  As satellites continue to offer finer 

pixel grains and additional spectral bands, they are fast becoming a viable choice over 

aerial imagery which is frequently cost-intensive.  Additionally, more studies classifying 

second-growth heterogeneous vegetation to fine categorical scales are needed to
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 adequately assess the application of object-oriented classification procedures on sites 

reflecting the changing landscape. 



 

 38 

References 

 
Aalto, K.R., Harper, G.D., 1989. Geologic evolution of the northernmost coast ranges 

and western Klamath mountains, California. American Geophysical Union, 
Washington, DC. 

 
Anderson, K.R., Harper, G.D., Roach, J.T., Witmer, R.E., 1976. A land use and land 

cover classification system for use with remote sensor data. USGS Survey, 
Government Printing Office, Washington, DC. 

 
Aplin, P., Atkinkson, P.M., Curran, P.J., 1997. Fine spatial resolution satellite sensors for 

the next decade. Int. J. of Remote Sens. 18, 3873-3881. 
 
Asner, P.G., Hicke, J.A., Lobell, D.B., 2003. Per-pixel analysis of forest structure: 

Vegetation indices, spectral mixture analysis and canopy reflectance modeling. 
In: Wulder, M.A., Franklin, S.E. (Eds.), Remote Sensing of Forest Environments: 
Concepts and Case Studies. Kluwer Academic Publishers, Norwell, 
Massachusetts, pp. 13-46. 

 
Barbarella, M., Lenzi, V., Zanni, M., 2004. Integration of airborne laser data and high 

resolution satellite images over landslides risk areas. Int. Arch. .Photogramm. 
Remote Sens. Spatial Info. Sci. 35, 945-950. 

 
Benson, B.J., MacKenzie, M.D., 1995. Effects of sensor spatial resolution on landscape 

structure parameters. Lands. Ecol. 10, 113-120. 
 
Braun-Blanquet, J., 1932. Plant sociology. McGraw-Hill, New York, New York. 
 
California Native Plant Society, 2004. California Native Plant Society relevé protocol. 

California Native Plant Society, Sacramento, California. 
 
Carleer, A., Wolff, E., 2004. Exploitation of very high resolution satellite data for tree 

species identification. Photogramm. Eng. Remote Sens. 70, 135-140. 
 
Černá, L., Chytrý, M., 2005. Supervised classification of plant communities with 

artificial neural networks. J. Veg. Sci. 16, 407-414. 
 
Chubey, M.S., Franklin, S.E., Wulder, M.A., 2006. Object-based analysis of Ikonos-2 

imagery for extraction of forest inventory parameters. Photogramm. Eng. Remote 
Sens. 72, 383-394.



 

 

39 

Cochrane, M.A., 2000. Using vegetation reflectance variability for species level 
classification of hyperspectral data. Int. J. of Remote Sens. 21, 2075-2087. 

 
Colwell, W., DeLapp, J., Gladish, E., 1960. California Cooperative Soil Vegetation 

Survey, Humboldt County. In, Soil - Vegetation Map Series. Pacific Southwest 
Forest & Range Experimental Station (USFS). 

 
Congalton, R.G., Green, K., 1999. Assessing the accuracy of remotely sensed data: 

principles and practices. Lewis Publications, Boca Raton. 
 
Cooper, A., McCann, T., Bunce, R.G.H., 2006. The influence of sampling intensity on 

vegetation classification and the implications for environmental management. 
Environ. Cons. 33, 118-127. 

 
Cushnie, J.L., 1987. The interactive effect of spatial resolution and degree of internal 

variability within land-cover types on classification accuracies. Int. J. of Remote 
Sens. 8, 15-29. 

 
Ellis, E.C., Wang, H., 2006. Estimating area errors for fine-scale feature-based ecological 

mapping. Int. J. of Remote Sens. 27, 4731-4749. 
 
Environmental Systems Research Institute, 2006. ArcGIS 9: Using ArcGIS Desktop. 

ESRI Press, Redlands, California. 
 
Environmental Systems Research Institute and The Nature Conservancy, 1994. USGS-

NPS vegetation mapping program: field methods for vegetation mapping. United 
States Department of the Interiro, Washington, D.C. 

 
ERDAS IMAGINE, 2005. Erdas Imagine Field Guide. ERDAS Inc., Atlanta, Georgia. 
 
Federal Geographic Data Committee, 1997. Vegetation Classification Standard: FGDC-

STD-005, U.S. Geological Survey, Reston, Virginia. 
 
Foody, G.M., 2002. Status of land cover classification accuracy assessment. Remote 

Sens. Environ. 8, 185-201. 
 
Foody, G.M., Arora, M.K., 1997. An evaluation of some factors affecting the accuracy of 

classification by an artificial neural network. Int. J. of Remote Sens. 18, 799-810. 
 
Foody, G.M., Mathur, A., 2006. The use of small training sets containing mixed pixels 

for accurate hard image classification: Training on mixed spectral responses for 
classification by a SVM. Remote Sens. Environ. 103, 179-189. 

 



 

 

40 

Foody, G.M., McCulloch, M.B., Yates, W.B., 1995. Classification of remotely sensed 
data by an artificial neural network: issues related to training data characteristics. 
Photogramm. Eng. Remote Sens. 61, 391-401. 

 
Gopal, S., Woodcock, C.E., 1994. Theory and methods for accuracy assessment of 

thematic maps using fuzzy sets. Photogramm. Eng. Remote Sens. 60, 181-188. 
 
Greenberg, J.A., Dobrowski, S.Z., Ramirez, C.M., Tull, J.L., Ustin, S.L., 2006. A 

bottom-up approach to vegetation mapping of the Lake Tahoe Basin using 
hyperspatial image analysis. Photogramm. Eng. Remote Sens. 72, 581-589. 

 
Hall, R.J., 2003. The roles of aerial photographs in forestry remote sensing image 

analysis. In: Wulder, M.A., Franklin, S.E. (Eds.), Remote Sensing of Forest 
Environments: Concepts and Case Studies. Kluwer Academic Publishers, 
Norwell, Massachusetts, pp. 47-76. 

 
Halpern, C.B., Spies, T.A., 1995. Plant species diversity in natural and managed forests 

of the Pacific Northwest. Ecol. Appl. 5, 913-934. 
 
Hay, G.J., Castilla, G., Wulder, M.A., Ruiz, J.R., 2005. An automated object-based 

approach for the multiscale image segmentation of forest scenes. J.  Appl. Earth 
Obs. Geoinfo. 7, 339-359. 

 
Jensen, J.R., 2000. Remote Sensing of the Environment: An Earth Resource Perspective. 

Prentice Hall, Upper Saddle River, New Jersey. 
 
Jiang, H., Strittholt, J.R., Frost, P.A., Slosser, N.C., 2004. The classification of late seral 

forests in the Pacific Northwest, USA using Landsat ETM+ imager. Remote Sens. 
Environ. 91, 320-331. 

 
Johansen, K., Coops, N.C., Gergel, S.E., Strange, Y., 2007. Application of high spatial 

resolution satellite imagery for riparian and forest ecosystem classification. 
Remote Sens. Environ.110, 29-44. 

 
Ju, J., Gopal, S., 2005. On the choice of spatial and categorical scale in remote sensing 

land cover classification. Remote Sens. Environ. 96, 62-77. 
 
Kimes, D.S., Ranson, K.J., Sun, G., Blair, J.B., 2006. Predicting LIDAR measured forest 

vertical structure from multi-angle spectra data. Remote Sens. Environ. 100, 503-
511. 

 
 
 



 

 

41 

Leckie, D.G., Gourgeon, F.A., Tinis, S., Nelson, T., Burnett, D., Paradine, D., 2005. 
Automated tree recognition in old growth conifer stands with high resolution 
digital imagery. Remote Sens. Environ. 94, 311-326. 

 
Leckie, D.G., Yuan, X., Ostaff, D.P., Piene, H., MacLean, D.A., 1992. Analysis of high 

resolution multispectral MEIS imagery for spruce budworm damage assessment 
on a single tree basis. Remote Sens. Environ. 40, 125-136. 

 
Lee, C., 2004. Vegetation alliances and associations of the Whiskeytown National 

Recreation Area. Master's thesis. Department of Forestry & Watershed 
Management. Humboldt State University, Arcata, California. 

 
Lefsky, A.M., Cohen, W.B., 2003. Selection of Remotely Sensed Data. In: Wulder, M.A., 

Franklin, S.E. (Eds.), Remote Sensing of Forest Environments: Concepts and 
Case Studies. Kluwer Academic Publishers, Norwell, Massachusetts, pp. 13-46. 

 
Lillesand, T.M., Kieffer, R.W., Chipman, J.W., 2004. Remote Sensing and Image 

Interpretation, 5th edition. John Wiley & Sons Inc., New York, New York. 
 
Liu, C., Frazier, P., Kumar, L., 2007. Comparative assessment of the measures of 

thematic classification accuracy. Remote Sens. Environ. 107, 606-616. 
 
Lu, D., 2005. Integration of vegetation inventory data and Landsat TM image for 

vegetation classification in the western Brazilian Amazon. For. Ecol. Manage. 
213, 369-383. 

 
Marceau, D.J., Howarth, P.J., Gratto, D.J., 1994. Remote Sensing and the measurement 

of geographical entities in a forested environment. The scale and spatial 
aggregation problem. Remote Sens. Environ. 49, 93-104. 

 
McCune, B., Grace, J.B., 2002. Analysis of ecological communities. MjM Software, 

Gleneden Beach, Oregon. 
 
Mueller-Dombois, D., Ellenberg, H., 1974. Aims and Methods of Vegetation Ecology. 

John Wiley & Sons, Inc., New York, New York. 
 
Mullerova, J., 2004. Use of digital aerial photography for sub-alpine vegetation mapping:  

A case study from the Krkonose Mts., Czech Republic. Plant Ecology 175, 259-
272. 

 
Rapp, J., Wang, D., Capen, D., Thompson, E., Lautzenheiser, T., 2005. Evaluating error 

in using the national vegetation classification system for ecological community 
mapping in Northern New England, USA. Natural Areas Journal 25, 46-54. 



 

 

42 

 
Ripley, B.D., 1996. Pattern Recognition and Neural Networks. Cambridge University 

Press, London, England. 
 
Rosenfield, G.H., Fitzpatrick-Lins, K., 1986. A coefficient of agreement as a measure of 

thematic classification accuracy. Photogramm. Eng. Remote Sens. 52, 223-227. 
 
Sandmann, H., Lertzman, K.P., 2003. Combining high-resolution aerial photography with 

gradient-directed transects to guide field sampling and forest mapping in 
mountainous terrain. For. Sci. 49, 429-443. 

 
Sawyer, J.O., Keeler-Wolf, T., 1995. Manual of California Vegetation. California Native 

Plant Society Press, Sacramento, California. 
 
Schatz, G., 2007. Personal Communication. 14345 Maple Creek Route, Korbel, CA 

95550. 
 
Song, M., Civco, D.L., Hurd, J.D., 2005. A competitive pixel-object approach for land 

cover classification. Int. J. of Remote Sens. 26, 4981-4997. 
 
Spies, T.A., Ripple, W.J., Bradshaw, G.A., 1994. Dynamics and pattern of a managed 

coniferous forest landscape. Ecological Applications 4, 555-568. 
 
Staufer, P., Fischer, M.M., 1997. Spectral pattern recognition by a two layer perceptron: 

Effects of training set size. In: Kanellopoulos, I., Wilkinson, G., Roli, F., Austin, 
J. (Eds.), Neurocomputation in Remote Sensing Data Analysis. Springer-Verlag, 
Berlin, Germany, pp. 105-116. 

 
Stehman, S.V., 1997. Selecting and interpreting measures of thematic classification 

accuracy. Remote Sens. Environ. 62, 77-89. 
 
Stohlgren, T.J., Chong, G.W., Kalkhan, M.A., Schell, L.D., 1997. Multiscale sampling of 

plant diversity:  Effects of minimum mapping unit size. Ecol. Appl. 7, 1064-1074. 
 
Story, M., Congalton, R.G., 1986. Accuracy assessment: A user's perspective. 

Photogramm. Eng. Remote Sens. 52, 397-399. 
 
Swain, M., Davis, S.M., 1978. Remote Sensing: The Quantitative Approach. McGraw-

Hill Inc., New York, New York. 
 
USDA, 2002. Existing Vegetation Classification and Mapping Technical Guide (Draft). 

USDA Forest Service, Washington, D.C. 
 



 

 

43 

 
USDA, 2007.  The PLANTS Database (http://plants.usda.gov, 19 October 2007). 

National Plant Data Center, Natural Resources Conservation Service, Baton 
Rouge, Louisiana. 

 
Vanderzanden, D., Morrison, M., 2003. High Resolution Image Classification:  A Forest 

Service Test of Visual Learning System’s Feature Analyst. USDA Forest Service, 
Salt Lake City, Utah. 

 
Visual Learning Systems, 2006. Feature Analyst Version 4.1 for Arc GIS Reference 

Manual. Visual Learning Systems Inc., Missoula, Montana. 
 
Woodcock, C.E., Strahler, A.H., 1987. The factor of scale in remote sensing. Remote 

Sens. Environ. 21, 311-332. 
 
Wulder, M.A., Hall, R.J., Coops, N.C., Franklin, S.E., 2004. High spatial resolution 

remotely-sensed data for the study of forest ecosystems. Bioscience 54, 511-521. 
 
Yildirim, A., Seker, D.Z., 2004. Country-based analysis of the investment dimension of 

the airborne and spaceborne imagery. In, Proceedings of XXth ISPRS Congress, 
12-23 July 2004, Istanbul, Turkey. 

 
Yu, Q., Gong, P., Clinton, N., Biging, G., Kelly, M., Schirokauer, D., 2006. Object-based 

detailed vegetation classification with airborne high spatial resolution remote 
sensing imagery. Photogramm. Eng. Remote Sens. 72, 799-811. 

 
 
 
 



 

 44 

Appendix A.   Vascular plant species found in study location.  Nomenclature follows the 
USDA PLANTS Database (USDA, 2007).   

 
Family Species Common name 

Aceraceae Acer macrophyllum Pursh bigleaf maple 

Aceraceae  Acer circinatum Pursh vine maple 

Anacardiaceae Toxicodendron diversilobum (Torr. & Gray) Greene Pacific poison-oak 

Apiaceae Daucus carota L. wild carrot  

Apiaceae Heracleum maximum Bartr. cow parsnip 

Apiaceae Osmorhiza chilensis Hook. & Arn. mountain sweet cicely  

Apiaceae Sanicula crassicaulis Poepp. ex DC. Pacific blacksnakeroot 

Araliaceae Aralia californica S. Wats. elk clover  

Aristolochiaceae Asarum caudatum Lindl. wild ginger  

Asteraceae Achillea millefolium L. common yarrow 

Asteraceae Adenocaulon bicolor Hook. American trailplant 

Asteraceae Baccharis pilularis DC. coyotebrush 

Asteraceae Cirsium vulgare (Savi) Ten. bull thistle 

Asteraceae Erechtites minima (Poir.) DC. coastal burnweed 

Asteraceae Gnaphalium sp. L.  cudweed 

Asteraceae Hieracium albiflorum Hook. white hawkweed 

Asteraceae Leucanthemum vulgare Lam. oxeye daisy 

Asteraceae Madia elegans D. Don ex Lindl. common madia 

Asteraceae Petasites palmatus (Ait.) Gray coltsfoot 

Asteraceae Taraxacum officinale G.H. Weber ex Wiggers dandelion 

Berberidaceae Achlys californica  Fukuda & Baker California deer-foot 

Berberidaceae Mahonia repens (Lindl.) G. Don  Oregon grape 

Berberidaceae Vancouveria hexandra (Hook.) Morr. & Dcne. white insideout flower 

Betulaceae Alnus rubra Bong. red alder 

Betulaceae Corylus cornuta  var. californica (A. DC.) Sharp California hazelnut 

Blechnaceae Blechnum spicant  (L.) Sm. deer fern 

Boraginaceae Plagiobothrys sp. Fisch. & C.A. Mey. popcorn flower 

Caprifoliaceae Lonicera hispidula (Lindl.) Dougl. ex Torr. & Gray honeysuckle 

Caprifoliaceae Sambucus racemosa L. red elderberry 

Caprifoliaceae Symphoricarpos albus (L.) Blake common snowberry 

Caryophyllaceae Stellaria media (L.) Vill. common chickweed 

Celastraceae Euonymus occidentale Nutt. ex Torr. var. occidentale western burning bush 

Clusiaceae Hypericum perforatum L. common St. Johnswort 

Cornaceae Cornus sericea L. American dogwood  

Cucurbitaceae Marah oreganus (Torr. ex S. Wats.) T.J. Howell coastal manroot 

Cupressaceae Sequoia sempervirens (Lamb. ex D. Don) Endl. coast redwood 

Cupressaceae Sequoiadendron giganteum (Lindl.) Buchh. giant sequoia 

Cyperaceae Carex deweyana Schwein. Dewey's sedge 

Cyperaceae Carex obnupta Bailey slough sedge  

Cyperaceae Carex sp. L. sedge 

Cyperaceae Cyperus eragrostis Lam. tall flatsedge  

Dennstaedtiaceae Pteridium aquilinum (L.) Kuhn bracken fern 
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Appendix A.   Vascular plant species found in study location.  Nomenclature follows yhe 
USDA PLANTS Database (USDA, 2007; continued).   

 
Family Species Common name 

Dipsacaceae Dipsacus fullonum L. Fuller's teasel 

Dryopteridaceae Athyrium filix-femina (L.) Roth  lady fern 

Dryopteridaceae Polystichum munitum (Kaulfuss) sword fern 

Equisetaceae Equisetum arvense L. common horsetail 

Equisetaceae Equisetum hyemale L. var. affine (Engelm.) A.A. Eat. giant scouring rush  

Ericaceae Arbutus menziesii Pursh Pacific madrone 

Ericaceae Arctostaphylos columbiana Piper hairy manzanita 

Ericaceae Gaultheria shallon Pursh salal 

Ericaceae Vaccinium ovatum Pursh evergreen huckleberry  

Ericaceae Vaccinium parvifolium Sm. red huckleberry 

Fabaceae Lathyrus sp. L. sweet-pea 

Fabaceae Lotus corniculatus L. broadleaf birdsfoot trefoil,  

Fabaceae Lupinus sp. L. lupine 

Fabaceae Melilotus alba (L.) Lam. yellow sweetclover 

Fabaceae Trifolium sp. L. clover 

Fabaceae Vicia sativa L. spring vetch 

Fagaceae Chrysolepis sempervirens Kellogg Hjelmqvist  bush chinquapin  

Fagaceae Lithocarpus densiflorus (Hook. & Arn.) Rehd. tanoak 

Fagaceae Quercus garryana Dougl. ex Hook. Oregon white oak 

Gentianaceae Centaurium muehlenbergii (Griseb.) W. Wight ex Piper  Muhlenberg's centaury  

Geraniaceae Geranium dissectum L. cut-leaved geranium  

Grossulariaceae Ribes bracteosum Dougl. ex Hook. stink currant 

Grossulariaceae Ribes menziesii Pursh canyon gooseberry  

Grossulariaceae Ribes sanguineum Pursh red-flowering currant  

Hydrangeaceae Whipplea modesta Torr. yerba de selva 

Hydrophyllaceae Hydrophyllum tenuipes  Heller Pacific waterleaf 

Hydrophyllaceae Nemophila pedunculata Dougl. ex Benth. littlefoot nemophila 

Hydrophyllaceae Phacelia sp. Juss phacelia  

Iridaceae Iris douglasiana Herbert Douglas iris 

Iridaceae Sisyrinchium bellum  S. Wats. blue-eyed-grass 

Juncaceae Juncus patens E. Mey. spreading rush 

Juncaceae Juncus sp. L. rush 

Lamiaceae Mentha arvensis L. wild mint 

Lamiaceae Prunella vulgaris L. self heal 

Lamiaceae Satureja douglasii (Benth.) Kuntze yerba buena 

Lamiaceae Stachys rigida Nutt. ex Benth. var. rigida  rigid hedge-nettle  

Lauraceae Umbellularia californica (Hook. & Arn.) Nutt. California bay 

Liliaceae Chlorogalum sp. Kunth soap plant 

Liliaceae Clintonia andrewsiana Torr. bead lily 

Liliaceae Dichelostemma capitatum (Benth.) Wood bluedicks 

Liliaceae Dichelostemma ida-maia (Wood) Greene  firecracker flower 

Liliaceae Disporum hookeri Torr. Hooker's fairy bells 

Liliaceae Lilium kelloggii Purdy Kellog's Lily 

Liliaceae Lilium sp. L. lily 

Liliaceae Scoliopus bigelovii Torr. fetid adder's tongue 
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Appendix A.   Vascular plant species found in study location.  Nomenclature follows the 
USDA PLANTS Database (USDA, 2007; continued). 

 

Family Species Common name 

Liliaceae Maianthemum racemossum (L.) Link false lily of the valley 

Liliaceae Maianthemum stellatum (L.) Link starry false lily of the valley 

Liliaceae Trillium ovatum Pursh coast trillium 

Linaceae Linum bienne P. Mill. pale flax 

Oleaceae Fraxinus latifolia Benth. Oregon ash 

Onagraceae Circaea alpina L.  enchanter's nightshade 

Onagraceae Epilobium sp. L. fireweed 

Orchidaceae Corallorrhiza striata Lindl. striped coral root  

Oxalidaceae Oxalis oregana Nutt. redwood sorrel 

Papaveraceae Dicentra formosa (Haw.) Walp. Pacific bleeding heart 

Philadelphaceae 
Philadelphus lewisii Pursh ssp. californicus (Benth.) 
Munz wild mock orange 

Pinaceae Abies grandis (Dougl. ex D. Don) Lindl. grand fir 

Pinaceae Pinus ponderosa P.& C. Lawson ponderosa pine 

Pinaceae Pinus radiata D. Don  Monterey pine 

Pinaceae Pinus sylvestris L. Scot's pine 

Pinaceae Pseudotsuga menziesii (Mirbel) Franco Douglas-fir 

Pinaceae Tsuga heterophylla (Raf.) Sarg. western hemlock 

Plantaginaceae Plantago lanceolata L. narrow-leaved plantain 

Poaceae Agrostis stolonifera L. creeping bentgrass 

Poaceae Anthoxanthum odoratum L. sweet vernal grass 

Poaceae Avena sp. L. oats 

Poaceae Briza minor L. little rattlesnake grass 

Poaceae Bromus hordeaceus L. soft brome 

Poaceae Cortaderia jubata (Lem.) Stapf  pampas grass 

Poaceae Cynosurus echinatus L. bristly dogtail grass 

Poaceae Dactylis glomerata L. orchard grass 

Poaceae Deschampsia cespitosa (L.) Beauv. tufted hair-grass 

Poaceae Elymus glaucus Buckl. blue wildrye 

Poaceae Hierochloe occidentalis Buckl. California sweetgrass 

Poaceae Holcus lanatus L. velvet grass 

Poaceae Hordeum sp. L. barley 

Poaceae 
Leymus ×vancouverensis (Vasey) Pilger (pro sp.) 
[mollis × triticoides]  wildrye 

Poaceae Lolium perenne L. English ryegrass 

Poaceae Phalaris sp. L. canarygrass 

Poaceae Phleum pratense L. common timothy 

Polemoniaceae Navarretia squarrosa (Eschsch.) Hook & Arn. skunkweed 

Polygonaceae Rumex acetosella L. common sheep sorrel 

Polygonaceae Rumex crispus L. yellow dock 

Polypodeaceae Adiantum pedatum L. northern maidenhair fern 

Portulaceae Claytonia perfoliata Donn ex Willd. miner's lettuce 

Portulaceae Claytonia sibirica L. Siberian candyflower 

Primulaceae Trientalis borealis Raf. ssp. latifolia (Hook.) Hultén broadleaf starflower 
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Appendix A.   Vascular plant species found in study location.  Nomenclature follows the 
USDA PLANTS Database (USDA, 2007; continued).   

 

Family Species Common name 

Pteridaceae 
Pentagramma triangularis (Kaulfuss) Yatskievych, 
Windham & Wollenweber goldenback fern 

Pyrolaceae Pyrola picta Sm. white-veined wintergreen,  

Ranunculaceae Ranunculus californicus buttercup 

Rhamnaceae Ceanothus thyrsiflorus Eschsch. blue blossom 

Rhamnaceae Rhamnus californica Eschsch. coffeeberry 

Rhamnaceae Rhamnus purshiana (DC.) Cooper  cascara buckthorn 

Rosaceae Fragaria vesca L. woodland strawberry  

Rosaceae Heteromeles arbutifolia (Lindl.) M. Roemer toyon  

Rosaceae Holodiscus discolor (Pursh) Maxim. oceanspray 

Rosaceae Oemleria cerasiformis (Hook & Arn.) J.W. Landon oso berry 

Rosaceae Prunus emarginata (Hook.) Walp. bitter cherry 

Rosaceae Rosa californica Cham. & Schldl. California rose 

Rosaceae Rosa gymnocarpa Nutt. wood rose 

Rosaceae Rubus discolor Focke himalayan blackberry 

Rosaceae Rubus parviflorus Nutt. thimbleberry 

Rosaceae Rubus spectabilis Pursh salmonberry 

Rosaceae Rubus ursinus Cham. & Schlecht. California blackberry 

Rubiaceae Galium aparine L. common bedstraw 

Salicaceae Salix hookeriana Barratt ex Hook. dune willow 

Salicaceae Salix scouleriana Barratt ex Hook. Scouler's willow 

Salicaceae Salix sitchensis Sanson ex Bong. Sitka willow 

Salicaceae Salix sp. L. willow 

Saxifragaceae Tolmiea menziesii (Pursh) Torr. & Gray  pig-a-back plant 

Scrophulariaceae Scrophularia californica Cham. & Schlecht.  California bee-plant  

Scrophulariaceae Veronica americana Schwein. ex Benth. water speedwell 

Urticaceae Urtica dioica L. stinging nettle 

Violeaceae Viola sp. L. violet 
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Appendix B. Transformed divergence values for vegetation classes by image type. 
Vegetation codes are defined in Table 5. 

 
Class A-Uc-Ld Pm Pm-Uc Pm-Ag Ld -UcPm IPG P 
(1) Spectral separation for the aerial photo (0.15 m, 4-band)  
A-Uc-Ld 0       

Pm 133 0      

Pm-Uc 120 83 0     

Pm-Ag 134 23 33 0    

Ld-Uc-Pm 149 136 102 97 0   

IPG 1261 1029 991 999 698 0  
P 227 176 350 258 288 1112 0 
        
(2) Spectral separation for the Quickbird image (0.61 m, 4-band) 
A-Uc-Ld 0       

Pm 224 0      

Pm-Uc 59 112 0     

Pm-Ag 160 27 69 0    
Ld-Uc-Pm 177 99 71 113 0   

IPG 1606 1345 1483 1530 1196 0  
P 934 395 740 493 632 1419 0 
        
(3) Spectral separation for the NAIP image (1.0 m, 3-band) 
A-Uc-Ld 0       

Pm 119 0      

Pm-Uc 40 56 0     

Pm-Ag 122 23 31 0    

Ld-Uc-Pm 224 198 297 299 0   

IPG 489 548 650 695 137 0  
P 644 310 589 452 386 741 0 
 
 


